我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?
喜欢的东西:
if A>0.4 then if B<0.2 then if C>0.8 then class='X'
我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?
喜欢的东西:
if A>0.4 then if B<0.2 then if C>0.8 then class='X'
当前回答
从这个答案中,您可以得到一个可读且高效的表示:https://stackoverflow.com/a/65939892/3746632
输出如下所示。X为一维向量,表示单个实例的特征。
from numba import jit,njit
@njit
def predict(X):
ret = 0
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
pass
else: # if w_mexico > 0.5
ret += 1
else: # if w_pizza > 0.5
pass
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
pass
else: # if w_mexico > 0.5
pass
else: # if w_pizza > 0.5
ret += 1
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
ret += 1
else: # if w_mexico > 0.5
ret += 1
else: # if w_pizza > 0.5
pass
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
ret += 1
else: # if w_mexico > 0.5
pass
else: # if w_pizza > 0.5
ret += 1
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
pass
else: # if w_mexico > 0.5
pass
else: # if w_pizza > 0.5
pass
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
pass
else: # if w_mexico > 0.5
ret += 1
else: # if w_pizza > 0.5
ret += 1
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
pass
else: # if w_mexico > 0.5
pass
else: # if w_pizza > 0.5
ret += 1
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
pass
else: # if w_mexico > 0.5
pass
else: # if w_pizza > 0.5
pass
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
pass
else: # if w_mexico > 0.5
pass
else: # if w_pizza > 0.5
pass
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
pass
else: # if w_mexico > 0.5
pass
else: # if w_pizza > 0.5
pass
return ret/10
其他回答
我相信这个答案比这里的其他答案更正确:
from sklearn.tree import _tree
def tree_to_code(tree, feature_names):
tree_ = tree.tree_
feature_name = [
feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
for i in tree_.feature
]
print "def tree({}):".format(", ".join(feature_names))
def recurse(node, depth):
indent = " " * depth
if tree_.feature[node] != _tree.TREE_UNDEFINED:
name = feature_name[node]
threshold = tree_.threshold[node]
print "{}if {} <= {}:".format(indent, name, threshold)
recurse(tree_.children_left[node], depth + 1)
print "{}else: # if {} > {}".format(indent, name, threshold)
recurse(tree_.children_right[node], depth + 1)
else:
print "{}return {}".format(indent, tree_.value[node])
recurse(0, 1)
这将打印出一个有效的Python函数。下面是一个树的输出示例,它试图返回它的输入,一个0到10之间的数字。
def tree(f0):
if f0 <= 6.0:
if f0 <= 1.5:
return [[ 0.]]
else: # if f0 > 1.5
if f0 <= 4.5:
if f0 <= 3.5:
return [[ 3.]]
else: # if f0 > 3.5
return [[ 4.]]
else: # if f0 > 4.5
return [[ 5.]]
else: # if f0 > 6.0
if f0 <= 8.5:
if f0 <= 7.5:
return [[ 7.]]
else: # if f0 > 7.5
return [[ 8.]]
else: # if f0 > 8.5
return [[ 9.]]
以下是我在其他答案中看到的一些绊脚石:
使用tree_。用阈值== -2来判断节点是否是叶节点不是一个好主意。如果它是一个阈值为-2的真实决策节点呢?相反,你应该看看树。Feature or tree.children_*。 对于tree_中的i,行features = [feature_names[i]。我的sklearn版本崩溃了,因为树。树_。特征为-2(特别是叶节点)。 递归函数中不需要有多个if语句,一个就可以了。
这是您需要的代码
我已经修改了顶部喜欢的代码缩进在一个jupyter笔记本python 3正确
import numpy as np
from sklearn.tree import _tree
def tree_to_code(tree, feature_names):
tree_ = tree.tree_
feature_name = [feature_names[i]
if i != _tree.TREE_UNDEFINED else "undefined!"
for i in tree_.feature]
print("def tree({}):".format(", ".join(feature_names)))
def recurse(node, depth):
indent = " " * depth
if tree_.feature[node] != _tree.TREE_UNDEFINED:
name = feature_name[node]
threshold = tree_.threshold[node]
print("{}if {} <= {}:".format(indent, name, threshold))
recurse(tree_.children_left[node], depth + 1)
print("{}else: # if {} > {}".format(indent, name, threshold))
recurse(tree_.children_right[node], depth + 1)
else:
print("{}return {}".format(indent, np.argmax(tree_.value[node])))
recurse(0, 1)
修改了Zelazny7的代码以从决策树中获取SQL。
# SQL from decision tree
def get_lineage(tree, feature_names):
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
features = [feature_names[i] for i in tree.tree_.feature]
le='<='
g ='>'
# get ids of child nodes
idx = np.argwhere(left == -1)[:,0]
def recurse(left, right, child, lineage=None):
if lineage is None:
lineage = [child]
if child in left:
parent = np.where(left == child)[0].item()
split = 'l'
else:
parent = np.where(right == child)[0].item()
split = 'r'
lineage.append((parent, split, threshold[parent], features[parent]))
if parent == 0:
lineage.reverse()
return lineage
else:
return recurse(left, right, parent, lineage)
print 'case '
for j,child in enumerate(idx):
clause=' when '
for node in recurse(left, right, child):
if len(str(node))<3:
continue
i=node
if i[1]=='l': sign=le
else: sign=g
clause=clause+i[3]+sign+str(i[2])+' and '
clause=clause[:-4]+' then '+str(j)
print clause
print 'else 99 end as clusters'
只需使用sklearn中的函数。像这样的树
from sklearn.tree import export_graphviz
export_graphviz(tree,
out_file = "tree.dot",
feature_names = tree.columns) //or just ["petal length", "petal width"]
然后在项目文件夹中查找文件树。点,复制所有的内容,并粘贴到这里http://www.webgraphviz.com/,并生成您的图形:)
我修改了Zelazny7提交的代码来打印一些伪代码:
def get_code(tree, feature_names):
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
features = [feature_names[i] for i in tree.tree_.feature]
value = tree.tree_.value
def recurse(left, right, threshold, features, node):
if (threshold[node] != -2):
print "if ( " + features[node] + " <= " + str(threshold[node]) + " ) {"
if left[node] != -1:
recurse (left, right, threshold, features,left[node])
print "} else {"
if right[node] != -1:
recurse (left, right, threshold, features,right[node])
print "}"
else:
print "return " + str(value[node])
recurse(left, right, threshold, features, 0)
如果你在同一个例子中调用get_code(dt, df.columns),你会得到:
if ( col1 <= 0.5 ) {
return [[ 1. 0.]]
} else {
if ( col2 <= 4.5 ) {
return [[ 0. 1.]]
} else {
if ( col1 <= 2.5 ) {
return [[ 1. 0.]]
} else {
return [[ 0. 1.]]
}
}
}