我有这样的代码:
good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]
目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。
我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?
我有这样的代码:
good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]
目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。
我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?
当前回答
good.append(x) if x in goodvals else bad.append(x)
来自@dansalmo的这个优雅简洁的回答被埋没在评论中,所以我只是把它作为一个答案转发到这里,这样它就能得到应有的重视,尤其是对新读者来说。
完整的例子:
good, bad = [], []
for x in my_list:
good.append(x) if x in goodvals else bad.append(x)
其他回答
def partition(pred, seq):
return reduce( lambda (yes, no), x: (yes+[x], no) if pred(x) else (yes, no+[x]), seq, ([], []) )
清晰快速
这个列表理解是简单的阅读和快速。这正是上级要求的。
set_good_vals = set(good_vals) # Speed boost.
good = [x for x in my_list if x in set_good_vals]
bad = [x for x in my_list if x not in set_good_vals]
我更喜欢一个列表理解而不是两个,但不像张贴的许多答案(其中一些相当巧妙),它是可读的和清晰的。这也是网页上最快的答案之一。
唯一(稍微)快一点的答案是:
set_good_vals = set(good_vals)
good, bad = [], []
for item in my_list:
_ = good.append(item) if item in set_good_vals else bad.append(item)
...还有它的变体。(见我的另一个答案)。但我觉得第一种方法更优雅,而且几乎一样快。
下面是惰性迭代器方法:
from itertools import tee
def split_on_condition(seq, condition):
l1, l2 = tee((condition(item), item) for item in seq)
return (i for p, i in l1 if p), (i for p, i in l2 if not p)
它对每个项计算一次条件,并返回两个生成器,第一个生成条件为真时序列中的值,另一个生成条件为假时序列中的值。
因为它是惰性的,你可以在任何迭代器上使用它,甚至是无限迭代器:
from itertools import count, islice
def is_prime(n):
return n > 1 and all(n % i for i in xrange(2, n))
primes, not_primes = split_on_condition(count(), is_prime)
print("First 10 primes", list(islice(primes, 10)))
print("First 10 non-primes", list(islice(not_primes, 10)))
通常情况下,非惰性列表返回方法会更好:
def split_on_condition(seq, condition):
a, b = [], []
for item in seq:
(a if condition(item) else b).append(item)
return a, b
编辑:对于您更具体的用例,将项目按某些键分割到不同的列表中,这里有一个通用函数:
DROP_VALUE = lambda _:_
def split_by_key(seq, resultmapping, keyfunc, default=DROP_VALUE):
"""Split a sequence into lists based on a key function.
seq - input sequence
resultmapping - a dictionary that maps from target lists to keys that go to that list
keyfunc - function to calculate the key of an input value
default - the target where items that don't have a corresponding key go, by default they are dropped
"""
result_lists = dict((key, []) for key in resultmapping)
appenders = dict((key, result_lists[target].append) for target, keys in resultmapping.items() for key in keys)
if default is not DROP_VALUE:
result_lists.setdefault(default, [])
default_action = result_lists[default].append
else:
default_action = DROP_VALUE
for item in seq:
appenders.get(keyfunc(item), default_action)(item)
return result_lists
用法:
def file_extension(f):
return f[2].lower()
split_files = split_by_key(files, {'images': IMAGE_TYPES}, keyfunc=file_extension, default='anims')
print split_files['images']
print split_files['anims']
为了提高性能,请尝试itertools。
itertools模块标准化了一组快速、内存高效的核心工具,这些工具单独使用或组合使用都很有用。它们一起构成了一个“迭代器代数”,使得用纯Python简洁有效地构造专门的工具成为可能。
出现看到itertools。过滤器或imap。
itertools。iterable ifilter(谓词) 创建一个迭代器,从iterable中过滤元素,只返回谓词为True的元素
如果你坚持聪明,你可以采用温登的解决方案,再加上一点虚假的聪明:
def splay(l, f, d=None):
d = d or {}
for x in l: d.setdefault(f(x), []).append(x)
return d