我有这样的代码:

good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]

目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。

我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?


当前回答

def partition(pred, iterable):
    'Use a predicate to partition entries into false entries and true entries'
    # partition(is_odd, range(10)) --> 0 2 4 6 8   and  1 3 5 7 9
    t1, t2 = tee(iterable)
    return filterfalse(pred, t1), filter(pred, t2)

检查这个

其他回答

如果你不想用两行代码来完成一个语义只需要一次的操作,你可以把上面的一些方法(甚至是你自己的方法)包装在一个函数中:

def part_with_predicate(l, pred):
    return [i for i in l if pred(i)], [i for i in l if not pred(i)]

这不是一种惰性计算方法,它确实对列表进行了两次迭代,但是它允许您在一行代码中对列表进行分区。

有时候你并不需要清单上的另一半。 例如:

import sys
from itertools import ifilter

trustedPeople = sys.argv[1].split(',')
newName = sys.argv[2]

myFriends = ifilter(lambda x: x.startswith('Shi'), trustedPeople)

print '%s is %smy friend.' % (newName, newName not in myFriends 'not ' or '')

手动迭代,使用条件选择每个元素将被追加到的列表:

good, bad = [], []
for x in mylist:
    (bad, good)[x in goodvals].append(x)

我基本上喜欢安德斯的方法,因为它非常普遍。下面的版本将分类器放在前面(以匹配过滤器语法),并使用defaultdict(假定已导入)。

def categorize(func, seq):
    """Return mapping from categories to lists
    of categorized items.
    """
    d = defaultdict(list)
    for item in seq:
        d[func(item)].append(item)
    return d

有时候,列表理解并不是最好的选择!

我根据人们对这个话题的回答做了一个小测试,在一个随机生成的列表上测试。以下是列表的生成(可能有更好的方法,但这不是重点):

good_list = ('.jpg','.jpeg','.gif','.bmp','.png')

import random
import string
my_origin_list = []
for i in xrange(10000):
    fname = ''.join(random.choice(string.lowercase) for i in range(random.randrange(10)))
    if random.getrandbits(1):
        fext = random.choice(good_list)
    else:
        fext = "." + ''.join(random.choice(string.lowercase) for i in range(3))

    my_origin_list.append((fname + fext, random.randrange(1000), fext))

好了

# Parand
def f1():
    return [e for e in my_origin_list if e[2] in good_list], [e for e in my_origin_list if not e[2] in good_list]

# dbr
def f2():
    a, b = list(), list()
    for e in my_origin_list:
        if e[2] in good_list:
            a.append(e)
        else:
            b.append(e)
    return a, b

# John La Rooy
def f3():
    a, b = list(), list()
    for e in my_origin_list:
        (b, a)[e[2] in good_list].append(e)
    return a, b

# Ants Aasma
def f4():
    l1, l2 = tee((e[2] in good_list, e) for e in my_origin_list)
    return [i for p, i in l1 if p], [i for p, i in l2 if not p]

# My personal way to do
def f5():
    a, b = zip(*[(e, None) if e[2] in good_list else (None, e) for e in my_origin_list])
    return list(filter(None, a)), list(filter(None, b))

# BJ Homer
def f6():
    return filter(lambda e: e[2] in good_list, my_origin_list), filter(lambda e: not e[2] in good_list, my_origin_list)

使用cmpthese函数,最好的结果是dbr答案:

f1     204/s  --    -5%   -14%   -15%   -20%   -26%
f6     215/s     6%  --    -9%   -11%   -16%   -22%
f3     237/s    16%    10%  --    -2%    -7%   -14%
f4     240/s    18%    12%     2%  --    -6%   -13%
f5     255/s    25%    18%     8%     6%  --    -8%
f2     277/s    36%    29%    17%    15%     9%  --