我一直认为std::vector是“作为数组实现的”,等等等等。今天我去测试了一下,结果似乎不是这样:

以下是一些测试结果:

UseArray completed in 2.619 seconds
UseVector completed in 9.284 seconds
UseVectorPushBack completed in 14.669 seconds
The whole thing completed in 26.591 seconds

这大约要慢3 - 4倍!这并不能证明“向量可能会慢几纳秒”的评论是正确的。

我使用的代码是:

#include <cstdlib>
#include <vector>

#include <iostream>
#include <string>

#include <boost/date_time/posix_time/ptime.hpp>
#include <boost/date_time/microsec_time_clock.hpp>

class TestTimer
{
    public:
        TestTimer(const std::string & name) : name(name),
            start(boost::date_time::microsec_clock<boost::posix_time::ptime>::local_time())
        {
        }

        ~TestTimer()
        {
            using namespace std;
            using namespace boost;

            posix_time::ptime now(date_time::microsec_clock<posix_time::ptime>::local_time());
            posix_time::time_duration d = now - start;

            cout << name << " completed in " << d.total_milliseconds() / 1000.0 <<
                " seconds" << endl;
        }

    private:
        std::string name;
        boost::posix_time::ptime start;
};

struct Pixel
{
    Pixel()
    {
    }

    Pixel(unsigned char r, unsigned char g, unsigned char b) : r(r), g(g), b(b)
    {
    }

    unsigned char r, g, b;
};

void UseVector()
{
    TestTimer t("UseVector");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        std::vector<Pixel> pixels;
        pixels.resize(dimension * dimension);

        for(int i = 0; i < dimension * dimension; ++i)
        {
            pixels[i].r = 255;
            pixels[i].g = 0;
            pixels[i].b = 0;
        }
    }
}

void UseVectorPushBack()
{
    TestTimer t("UseVectorPushBack");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        std::vector<Pixel> pixels;
            pixels.reserve(dimension * dimension);

        for(int i = 0; i < dimension * dimension; ++i)
            pixels.push_back(Pixel(255, 0, 0));
    }
}

void UseArray()
{
    TestTimer t("UseArray");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        Pixel * pixels = (Pixel *)malloc(sizeof(Pixel) * dimension * dimension);

        for(int i = 0 ; i < dimension * dimension; ++i)
        {
            pixels[i].r = 255;
            pixels[i].g = 0;
            pixels[i].b = 0;
        }

        free(pixels);
    }
}

int main()
{
    TestTimer t1("The whole thing");

    UseArray();
    UseVector();
    UseVectorPushBack();

    return 0;
}

我做错了吗?还是我刚刚打破了这个性能神话?

我使用Visual Studio 2005中的发布模式。


在Visual c++中,#define _SECURE_SCL 0将UseVector减少了一半(减少到4秒)。在我看来,这真的是件大事。


当前回答

公平地说,您不能将c++实现与C实现进行比较,即我所说的malloc版本。Malloc不创建对象——它只分配原始内存。然后不调用构造函数就把内存当作对象,这是拙劣的c++(可能是无效的——我把这个问题留给语言律师吧)。

也就是说,简单地将malloc更改为新的Pixel[维度*维度]并自由删除[]个像素,这与您所拥有的Pixel的简单实现没有太大区别。下面是我的盒子(E6600, 64位)上的结果:

UseArray completed in 0.269 seconds
UseVector completed in 1.665 seconds
UseVectorPushBack completed in 7.309 seconds
The whole thing completed in 9.244 seconds

但随着一个微小的变化,情况发生了变化:

Pixel.h

struct Pixel
{
    Pixel();
    Pixel(unsigned char r, unsigned char g, unsigned char b);

    unsigned char r, g, b;
};

Pixel.cc

#include "Pixel.h"

Pixel::Pixel() {}
Pixel::Pixel(unsigned char r, unsigned char g, unsigned char b) 
  : r(r), g(g), b(b) {}

main.cc

#include "Pixel.h"
[rest of test harness without class Pixel]
[UseArray now uses new/delete not malloc/free]

编译如下:

$ g++ -O3 -c -o Pixel.o Pixel.cc
$ g++ -O3 -c -o main.o main.cc
$ g++ -o main main.o Pixel.o

我们得到了非常不同的结果:

UseArray completed in 2.78 seconds
UseVector completed in 1.651 seconds
UseVectorPushBack completed in 7.826 seconds
The whole thing completed in 12.258 seconds

使用Pixel的非内联构造函数,std::vector现在可以击败原始数组。

通过std::vector和std:allocator进行分配的复杂性似乎太多了,无法像简单的新Pixel[n]那样有效地进行优化。然而,我们可以看到问题仅仅是分配而不是vector访问,通过调整几个测试函数来创建vector/数组,将其移到循环之外:

void UseVector()
{
    TestTimer t("UseVector");

    int dimension = 999;
    std::vector<Pixel> pixels;
    pixels.resize(dimension * dimension);

    for(int i = 0; i < 1000; ++i)
    {
        for(int i = 0; i < dimension * dimension; ++i)
        {
            pixels[i].r = 255;
            pixels[i].g = 0;
            pixels[i].b = 0;
        }
    }
}

and

void UseArray()
{
    TestTimer t("UseArray");

    int dimension = 999;
    Pixel * pixels = new Pixel[dimension * dimension];

    for(int i = 0; i < 1000; ++i)
    {
        for(int i = 0 ; i < dimension * dimension; ++i)
        {
            pixels[i].r = 255;
            pixels[i].g = 0;
            pixels[i].b = 0;
        }
    }
    delete [] pixels;
}

我们现在得到这些结果:

UseArray completed in 0.254 seconds
UseVector completed in 0.249 seconds
UseVectorPushBack completed in 7.298 seconds
The whole thing completed in 7.802 seconds

从这里我们可以了解到std::vector可以与原始数组进行访问,但是如果你需要多次创建和删除vector/数组,在元素的构造函数没有内联的情况下,创建一个复杂的对象将比创建一个简单的数组花费更多的时间。我不认为这很令人惊讶。

其他回答

我不得不说我不是c++方面的专家。但要补充一些实验结果:

编译: gcc-6.2.0/bin/g++ -O3 -std=c++14 vector.cpp

机:

Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00GHz 

OS:

2.6.32-642.13.1.el6.x86_64

输出:

UseArray completed in 0.167821 seconds
UseVector completed in 0.134402 seconds
UseConstructor completed in 0.134806 seconds
UseFillConstructor completed in 1.00279 seconds
UseVectorPushBack completed in 6.6887 seconds
The whole thing completed in 8.12888 seconds

这里我唯一感到奇怪的是“UseFillConstructor”的性能与“UseConstructor”相比。

代码:

void UseConstructor()
{
    TestTimer t("UseConstructor");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        std::vector<Pixel> pixels(dimension*dimension);
        for(int i = 0; i < dimension * dimension; ++i)
        {
            pixels[i].r = 255;
            pixels[i].g = 0;
            pixels[i].b = 0;
        }
    }
}


void UseFillConstructor()
{
    TestTimer t("UseFillConstructor");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        std::vector<Pixel> pixels(dimension*dimension, Pixel(255,0,0));
    }
}

因此提供的额外“值”大大降低了性能,我认为这是由于多次调用复制构造函数造成的。但是…

编译:

gcc-6.2.0/bin/g++ -std=c++14 -O vector.cpp

输出:

UseArray completed in 1.02464 seconds
UseVector completed in 1.31056 seconds
UseConstructor completed in 1.47413 seconds
UseFillConstructor completed in 1.01555 seconds
UseVectorPushBack completed in 6.9597 seconds
The whole thing completed in 11.7851 seconds

因此,在这种情况下,gcc优化非常重要,但当一个值作为默认值提供时,它帮不了你太多。这,其实是对我的学费。希望它能帮助新程序员选择哪种矢量初始化格式。

试试这个:

void UseVectorCtor()
{
    TestTimer t("UseConstructor");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        std::vector<Pixel> pixels(dimension * dimension, Pixel(255, 0, 0));
    }
}

我得到了和数组几乎完全一样的性能。

The thing about vector is that it's a much more general tool than an array. And that means you have to consider how you use it. It can be used in a lot of different ways, providing functionality that an array doesn't even have. And if you use it "wrong" for your purpose, you incur a lot of overhead, but if you use it correctly, it is usually basically a zero-overhead data structure. In this case, the problem is that you separately initialized the vector (causing all elements to have their default ctor called), and then overwriting each element individually with the correct value. That is much harder for the compiler to optimize away than when you do the same thing with an array. Which is why the vector provides a constructor which lets you do exactly that: initialize N elements with value X.

当你使用它时,向量和数组一样快。

所以,你还没有打破性能神话。但是你已经证明了只有当你最优地使用向量时它才成立,这也是一个很好的观点。:)

好的一面是,它确实是最简单的用法,但却是最快的。如果您将我的代码片段(一行)与John Kugelman的答案进行对比,其中包含大量的调整和优化,但仍然不能完全消除性能差异,很明显,vector的设计非常巧妙。你不必费尽周折才能得到等于数组的速度。相反,您必须使用最简单的解决方案。

我只是想提一下vector(和smart_ptr)只是原始数组(和原始指针)上的一个薄层。 实际上在连续存储器中向量的访问时间比数组快。 下面的代码显示了初始化和访问向量和数组的结果。

#include <boost/date_time/posix_time/posix_time.hpp>
#include <iostream>
#include <vector>
#define SIZE 20000
int main() {
    srand (time(NULL));
    vector<vector<int>> vector2d;
    vector2d.reserve(SIZE);
    int index(0);
    boost::posix_time::ptime start_total = boost::posix_time::microsec_clock::local_time();
    //  timer start - build + access
    for (int i = 0; i < SIZE; i++) {
        vector2d.push_back(vector<int>(SIZE));
    }
    boost::posix_time::ptime start_access = boost::posix_time::microsec_clock::local_time();
    //  timer start - access
    for (int i = 0; i < SIZE; i++) {
        index = rand()%SIZE;
        for (int j = 0; j < SIZE; j++) {

            vector2d[index][index]++;
        }
    }
    boost::posix_time::ptime end = boost::posix_time::microsec_clock::local_time();
    boost::posix_time::time_duration msdiff = end - start_total;
    cout << "Vector total time: " << msdiff.total_milliseconds() << "milliseconds.\n";
    msdiff = end - start_acess;
    cout << "Vector access time: " << msdiff.total_milliseconds() << "milliseconds.\n"; 


    int index(0);
    int** raw2d = nullptr;
    raw2d = new int*[SIZE];
    start_total = boost::posix_time::microsec_clock::local_time();
    //  timer start - build + access
    for (int i = 0; i < SIZE; i++) {
        raw2d[i] = new int[SIZE];
    }
    start_access = boost::posix_time::microsec_clock::local_time();
    //  timer start - access
    for (int i = 0; i < SIZE; i++) {
        index = rand()%SIZE;
        for (int j = 0; j < SIZE; j++) {

            raw2d[index][index]++;
        }
    }
    end = boost::posix_time::microsec_clock::local_time();
    msdiff = end - start_total;
    cout << "Array total time: " << msdiff.total_milliseconds() << "milliseconds.\n";
    msdiff = end - start_acess;
    cout << "Array access time: " << msdiff.total_milliseconds() << "milliseconds.\n"; 
    for (int i = 0; i < SIZE; i++) {
        delete [] raw2d[i];
    }
    return 0;
}

输出结果为:

    Vector total time: 925milliseconds.
    Vector access time: 4milliseconds.
    Array total time: 30milliseconds.
    Array access time: 21milliseconds.

所以如果使用得当,速度几乎是一样的。 (正如其他人提到的使用reserve()或resize())。

根据我的经验,有时候,只是有时候,vector<int>可能比int[]慢很多倍。需要记住的一点是,向量的向量与int[][]非常不同。因为元素在内存中可能不是连续的。这意味着你可以在主向量中调整不同向量的大小,但CPU可能无法像int[][]那样缓存元素。

我做了一些长期以来一直想做的广泛测试。不妨分享一下。

这是我的双启动机i7-3770, 16GB Ram, x86_64, Windows 8.1和Ubuntu 16.04。更多信息和结论,备注如下。测试了MSVS 2017和g++(在Windows和Linux上)。

测试程序

#include <iostream>
#include <chrono>
//#include <algorithm>
#include <array>
#include <locale>
#include <vector>
#include <queue>
#include <deque>

// Note: total size of array must not exceed 0x7fffffff B = 2,147,483,647B
//  which means that largest int array size is 536,870,911
// Also image size cannot be larger than 80,000,000B
constexpr int long g_size = 100000;
int g_A[g_size];


int main()
{
    std::locale loc("");
    std::cout.imbue(loc);
    constexpr int long size = 100000;  // largest array stack size

    // stack allocated c array
    std::chrono::steady_clock::time_point start = std::chrono::steady_clock::now();
    int A[size];
    for (int i = 0; i < size; i++)
        A[i] = i;

    auto duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "c-style stack array duration=" << duration / 1000.0 << "ms\n";
    std::cout << "c-style stack array size=" << sizeof(A) << "B\n\n";

    // global stack c array
    start = std::chrono::steady_clock::now();
    for (int i = 0; i < g_size; i++)
        g_A[i] = i;

    duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "global c-style stack array duration=" << duration / 1000.0 << "ms\n";
    std::cout << "global c-style stack array size=" << sizeof(g_A) << "B\n\n";

    // raw c array heap array
    start = std::chrono::steady_clock::now();
    int* AA = new int[size];    // bad_alloc() if it goes higher than 1,000,000,000
    for (int i = 0; i < size; i++)
        AA[i] = i;

    duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "c-style heap array duration=" << duration / 1000.0 << "ms\n";
    std::cout << "c-style heap array size=" << sizeof(AA) << "B\n\n";
    delete[] AA;

    // std::array<>
    start = std::chrono::steady_clock::now();
    std::array<int, size> AAA;
    for (int i = 0; i < size; i++)
        AAA[i] = i;
    //std::sort(AAA.begin(), AAA.end());

    duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "std::array duration=" << duration / 1000.0 << "ms\n";
    std::cout << "std::array size=" << sizeof(AAA) << "B\n\n";

    // std::vector<>
    start = std::chrono::steady_clock::now();
    std::vector<int> v;
    for (int i = 0; i < size; i++)
        v.push_back(i);
    //std::sort(v.begin(), v.end());

    duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "std::vector duration=" << duration / 1000.0 << "ms\n";
    std::cout << "std::vector size=" << v.size() * sizeof(v.back()) << "B\n\n";

    // std::deque<>
    start = std::chrono::steady_clock::now();
    std::deque<int> dq;
    for (int i = 0; i < size; i++)
        dq.push_back(i);
    //std::sort(dq.begin(), dq.end());

    duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "std::deque duration=" << duration / 1000.0 << "ms\n";
    std::cout << "std::deque size=" << dq.size() * sizeof(dq.back()) << "B\n\n";

    // std::queue<>
    start = std::chrono::steady_clock::now();
    std::queue<int> q;
    for (int i = 0; i < size; i++)
        q.push(i);

    duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "std::queue duration=" << duration / 1000.0 << "ms\n";
    std::cout << "std::queue size=" << q.size() * sizeof(q.front()) << "B\n\n";
}

结果

//////////////////////////////////////////////////////////////////////////////////////////
// with MSVS 2017:
// >> cl /std:c++14 /Wall -O2 array_bench.cpp
//
// c-style stack array duration=0.15ms
// c-style stack array size=400,000B
//
// global c-style stack array duration=0.130ms
// global c-style stack array size=400,000B
//
// c-style heap array duration=0.90ms
// c-style heap array size=4B
//
// std::array duration=0.20ms
// std::array size=400,000B
//
// std::vector duration=0.544ms
// std::vector size=400,000B
//
// std::deque duration=1.375ms
// std::deque size=400,000B
//
// std::queue duration=1.491ms
// std::queue size=400,000B
//
//////////////////////////////////////////////////////////////////////////////////////////
//
// with g++ version:
//      - (tdm64-1) 5.1.0 on Windows
//      - (Ubuntu 5.4.0-6ubuntu1~16.04.10) 5.4.0 20160609 on Ubuntu 16.04
// >> g++ -std=c++14 -Wall -march=native -O2 array_bench.cpp -o array_bench
//
// c-style stack array duration=0ms
// c-style stack array size=400,000B
//
// global c-style stack array duration=0.124ms
// global c-style stack array size=400,000B
//
// c-style heap array duration=0.648ms
// c-style heap array size=8B
//
// std::array duration=1ms
// std::array size=400,000B
//
// std::vector duration=0.402ms
// std::vector size=400,000B
//
// std::deque duration=0.234ms
// std::deque size=400,000B
//
// std::queue duration=0.304ms
// std::queue size=400,000
//
//////////////////////////////////////////////////////////////////////////////////////////

笔记

平均10次组装。 我最初也使用std::sort()执行测试(您可以看到它被注释掉了),但后来删除了它们,因为没有显著的相对差异。

我的结论和评论

notice how global c-style array takes almost as much time as the heap c-style array Out of all tests I noticed a remarkable stability in std::array's time variations between consecutive runs, while others especially std:: data structs varied wildly in comparison O3 optimization didn't show any noteworthy time differences Removing optimization on Windows cl (no -O2) and on g++ (Win/Linux no -O2, no -march=native) increases times SIGNIFICANTLY. Particularly for std::data structs. Overall higher times on MSVS than g++, but std::array and c-style arrays faster on Windows without optimization g++ produces faster code than microsoft's compiler (apparently it runs faster even on Windows).

判决

当然,这是用于优化构建的代码。既然问题是关于std::vector,那么是的,它是!比普通数组(优化/未优化)慢。但是当您进行基准测试时,您自然希望生成优化的代码。

对我来说,这个节目的明星是std::array。