在Python中如何找到列表的中值?列表可以是任意大小的,并且数字不保证是任何特定的顺序。

如果列表包含偶数个元素,则函数应返回中间两个元素的平均值。

以下是一些例子(为了便于展示,进行了排序):

median([1]) == 1
median([1, 1]) == 1
median([1, 1, 2, 4]) == 1.5
median([0, 2, 5, 6, 8, 9, 9]) == 6
median([0, 0, 0, 0, 4, 4, 6, 8]) == 2

当前回答

中值函数

def median(midlist):
    midlist.sort()
    lens = len(midlist)
    if lens % 2 != 0: 
        midl = (lens / 2)
        res = midlist[midl]
    else:
        odd = (lens / 2) -1
        ev = (lens / 2) 
        res = float(midlist[odd] + midlist[ev]) / float(2)
    return res

其他回答

如果需要更快的平均情况运行时间,可以尝试快速选择算法。Quickselect具有平均(和最佳)情况性能O(n),尽管在糟糕的一天它可能会以O(n²)结束。

下面是一个随机选择枢轴的实现:

import random

def select_nth(n, items):
    pivot = random.choice(items)

    lesser = [item for item in items if item < pivot]
    if len(lesser) > n:
        return select_nth(n, lesser)
    n -= len(lesser)

    numequal = items.count(pivot)
    if numequal > n:
        return pivot
    n -= numequal

    greater = [item for item in items if item > pivot]
    return select_nth(n, greater)

你可以简单地把它变成一个方法来寻找中位数:

def median(items):
    if len(items) % 2:
        return select_nth(len(items)//2, items)

    else:
        left  = select_nth((len(items)-1) // 2, items)
        right = select_nth((len(items)+1) // 2, items)

        return (left + right) / 2

这是非常未优化的,但即使是一个优化的版本也不太可能超过Tim Sort (CPython的内置排序),因为它真的很快。我以前试过,但失败了。

以下是我在Codecademy的练习中得出的结论:

def median(data):
    new_list = sorted(data)
    if len(new_list)%2 > 0:
        return new_list[len(new_list)/2]
    elif len(new_list)%2 == 0:
        return (new_list[(len(new_list)/2)] + new_list[(len(new_list)/2)-1]) /2.0

print median([1,2,3,4,5,9])

一个返回给定列表中值的简单函数:

def median(lst):
    lst = sorted(lst)  # Sort the list first
    if len(lst) % 2 == 0:  # Checking if the length is even
        # Applying formula which is sum of middle two divided by 2
        return (lst[len(lst) // 2] + lst[(len(lst) - 1) // 2]) / 2
    else:
        # If length is odd then get middle value
        return lst[len(lst) // 2]

一些关于中值函数的例子:

>>> median([9, 12, 20, 21, 34, 80])  # Even
20.5
>>> median([9, 12, 80, 21, 34])  # Odd
21

如果你想使用库,你可以简单地做:

>>> import statistics
>>> statistics.median([9, 12, 20, 21, 34, 80])  # Even
20.5
>>> statistics.median([9, 12, 80, 21, 34])  # Odd
21

只要两行就够了。

def get_median(arr):
    '''
    Calculate the median of a sequence.
    :param arr: list
    :return: int or float
    '''
    arr = sorted(arr)
    return arr[len(arr)//2] if len(arr) % 2 else (arr[len(arr)//2] + arr[len(arr)//2-1])/2
import numpy as np
def get_median(xs):
        mid = len(xs) // 2  # Take the mid of the list
        if len(xs) % 2 == 1: # check if the len of list is odd
            return sorted(xs)[mid] #if true then mid will be median after sorting
        else:
            #return 0.5 * sum(sorted(xs)[mid - 1:mid + 1])
            return 0.5 * np.sum(sorted(xs)[mid - 1:mid + 1]) #if false take the avg of mid
print(get_median([7, 7, 3, 1, 4, 5]))
print(get_median([1,2,3, 4,5]))