我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:

df:

A     B   C
1000  10  0.5
765   5   0.35
800   7   0.09

知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?

我想要的输出是:

A     B    C
1     1    1
0.765 0.5  0.7
0.8   0.7  0.18(which is 0.09/0.5)

当前回答

正常化

您可以使用minmax_scale将每一列转换为从0到1的刻度。

from sklearn.preprocessing import minmax_scale
df[:] = minmax_scale(df)

标准化

您可以使用比例将每列居中到平均值,并缩放到单位方差。

from sklearn.preprocessing import scale
df[:] = scale(df)

列的子集

归一化单列

from sklearn.preprocessing import minmax_scale
df['a'] = minmax_scale(df['a'])

只归一化数值列

import numpy as np
from sklearn.preprocessing import minmax_scale
cols = df.select_dtypes(np.number).columns
df[cols] = minmax_scale(df[cols])

完整的示例

# Prep
import pandas as pd
import numpy as np
from sklearn.preprocessing import minmax_scale

# Sample data
df = pd.DataFrame({'a':[0,1,2], 'b':[-10,-30,-50], 'c':['x', 'y', 'z']})

# MinMax normalize all numeric columns
cols = df.select_dtypes(np.number).columns
df[cols] = minmax_scale(df[cols])

# Result
print(df)

#    a    b  c
# 0  0.0  1.0  x
# 2  0.5  0.5  y
# 3  1.0  0.0  z

注:

在所有示例中,可以使用scale来代替minmax_scale。保持索引、列名或非数值变量不变。函数应用于每一列。

警告:

对于机器学习,可以使用minmax_scale或train_test_split后的scale来避免数据泄露。

Info

更多关于标准化和规范化的信息:

https://machinelearningmastery.com/standardscaler-and-minmaxscaler-transforms-in-python/ https://en.wikipedia.org/wiki/Normalization_(统计) https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing

其他回答

正常化

您可以使用minmax_scale将每一列转换为从0到1的刻度。

from sklearn.preprocessing import minmax_scale
df[:] = minmax_scale(df)

标准化

您可以使用比例将每列居中到平均值,并缩放到单位方差。

from sklearn.preprocessing import scale
df[:] = scale(df)

列的子集

归一化单列

from sklearn.preprocessing import minmax_scale
df['a'] = minmax_scale(df['a'])

只归一化数值列

import numpy as np
from sklearn.preprocessing import minmax_scale
cols = df.select_dtypes(np.number).columns
df[cols] = minmax_scale(df[cols])

完整的示例

# Prep
import pandas as pd
import numpy as np
from sklearn.preprocessing import minmax_scale

# Sample data
df = pd.DataFrame({'a':[0,1,2], 'b':[-10,-30,-50], 'c':['x', 'y', 'z']})

# MinMax normalize all numeric columns
cols = df.select_dtypes(np.number).columns
df[cols] = minmax_scale(df[cols])

# Result
print(df)

#    a    b  c
# 0  0.0  1.0  x
# 2  0.5  0.5  y
# 3  1.0  0.0  z

注:

在所有示例中,可以使用scale来代替minmax_scale。保持索引、列名或非数值变量不变。函数应用于每一列。

警告:

对于机器学习,可以使用minmax_scale或train_test_split后的scale来避免数据泄露。

Info

更多关于标准化和规范化的信息:

https://machinelearningmastery.com/standardscaler-and-minmaxscaler-transforms-in-python/ https://en.wikipedia.org/wiki/Normalization_(统计) https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing

这是你如何使用列表推导式来做的:

[df[col].update((df[col] - df[col].min()) / (df[col].max() - df[col].min())) for col in df.columns]

注意这个答案,因为它只适用于范围为[0,n]的数据。这对任何范围的数据都不起作用。


简单就是美:

df["A"] = df["A"] / df["A"].max()
df["B"] = df["B"] / df["B"].max()
df["C"] = df["C"] / df["C"].max()

基于这篇文章:https://stats.stackexchange.com/questions/70801/how-to-normalize-data-to-0-1-range

您可以执行以下操作:

def normalize(df):
    result = df.copy()
    for feature_name in df.columns:
        max_value = df[feature_name].max()
        min_value = df[feature_name].min()
        result[feature_name] = (df[feature_name] - min_value) / (max_value - min_value)
    return result

你不需要一直担心你的价值观是积极的还是消极的。这些值应该很好地分布在0和1之间。

如果你喜欢使用sklearn包,你可以像这样使用pandas loc来保持列名和索引名:

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler() 
scaled_values = scaler.fit_transform(df) 
df.loc[:,:] = scaled_values