我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:
df:
A B C
1000 10 0.5
765 5 0.35
800 7 0.09
知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?
我想要的输出是:
A B C
1 1 1
0.765 0.5 0.7
0.8 0.7 0.18(which is 0.09/0.5)
我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:
df:
A B C
1000 10 0.5
765 5 0.35
800 7 0.09
知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?
我想要的输出是:
A B C
1 1 1
0.765 0.5 0.7
0.8 0.7 0.18(which is 0.09/0.5)
当前回答
你的问题实际上是一个作用于列的简单变换:
def f(s):
return s/s.max()
frame.apply(f, axis=0)
或者更简洁:
frame.apply(lambda x: x/x.max(), axis=0)
其他回答
注意这个答案,因为它只适用于范围为[0,n]的数据。这对任何范围的数据都不起作用。
简单就是美:
df["A"] = df["A"] / df["A"].max()
df["B"] = df["B"] / df["B"].max()
df["C"] = df["C"] / df["C"].max()
基于这篇文章:https://stats.stackexchange.com/questions/70801/how-to-normalize-data-to-0-1-range
您可以执行以下操作:
def normalize(df):
result = df.copy()
for feature_name in df.columns:
max_value = df[feature_name].max()
min_value = df[feature_name].min()
result[feature_name] = (df[feature_name] - min_value) / (max_value - min_value)
return result
你不需要一直担心你的价值观是积极的还是消极的。这些值应该很好地分布在0和1之间。
您可以使用sklearn包及其相关的预处理实用程序来规范化数据。
import pandas as pd
from sklearn import preprocessing
x = df.values #returns a numpy array
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
df = pd.DataFrame(x_scaled)
有关更多信息,请参阅scikit-learn关于预处理数据的文档:将特性扩展到一个范围。
df_normalized = df / df.max(axis=0)
你的问题实际上是一个作用于列的简单变换:
def f(s):
return s/s.max()
frame.apply(f, axis=0)
或者更简洁:
frame.apply(lambda x: x/x.max(), axis=0)