我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:
df:
A B C
1000 10 0.5
765 5 0.35
800 7 0.09
知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?
我想要的输出是:
A B C
1 1 1
0.765 0.5 0.7
0.8 0.7 0.18(which is 0.09/0.5)
我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:
df:
A B C
1000 10 0.5
765 5 0.35
800 7 0.09
知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?
我想要的输出是:
A B C
1 1 1
0.765 0.5 0.7
0.8 0.7 0.18(which is 0.09/0.5)
当前回答
我认为在熊猫身上更好的方法是
df = df/df.max().astype(np.float64)
如果在你的数据帧中出现负数,你应该用负数代替
df = df/df.loc[df.abs().idxmax()].astype(np.float64)
其他回答
这是你如何使用列表推导式来做的:
[df[col].update((df[col] - df[col].min()) / (df[col].max() - df[col].min())) for col in df.columns]
基于这篇文章:https://stats.stackexchange.com/questions/70801/how-to-normalize-data-to-0-1-range
您可以执行以下操作:
def normalize(df):
result = df.copy()
for feature_name in df.columns:
max_value = df[feature_name].max()
min_value = df[feature_name].min()
result[feature_name] = (df[feature_name] - min_value) / (max_value - min_value)
return result
你不需要一直担心你的价值观是积极的还是消极的。这些值应该很好地分布在0和1之间。
我认为在熊猫身上更好的方法是
df = df/df.max().astype(np.float64)
如果在你的数据帧中出现负数,你应该用负数代替
df = df/df.loc[df.abs().idxmax()].astype(np.float64)
你可以简单地使用pandas.DataFrame。Transform1函数如下所示:
df.transform(lambda x: x/x.max())
要规范化一个DataFrame列,只使用本机Python。
不同的值会影响过程,例如图的颜色。
0到1之间:
min_val = min(list(df['col']))
max_val = max(list(df['col']))
df['col'] = [(x - min_val) / max_val for x in df['col']]
-1 ~ 1:
df['col'] = [float(i)/sum(df['col']) for i in df['col']]
OR
df['col'] = [float(tp) / max(abs(df['col'])) for tp in df['col']]