如何将以下字符串转换为datetime对象?
"Jun 1 2005 1:33PM"
如何将以下字符串转换为datetime对象?
"Jun 1 2005 1:33PM"
当前回答
arrow为日期和时间提供了许多有用的函数。这段代码为这个问题提供了答案,并表明箭头还能够轻松格式化日期并显示其他地区的信息。
>>> import arrow
>>> dateStrings = [ 'Jun 1 2005 1:33PM', 'Aug 28 1999 12:00AM' ]
>>> for dateString in dateStrings:
... dateString
... arrow.get(dateString.replace(' ',' '), 'MMM D YYYY H:mmA').datetime
... arrow.get(dateString.replace(' ',' '), 'MMM D YYYY H:mmA').format('ddd, Do MMM YYYY HH:mm')
... arrow.get(dateString.replace(' ',' '), 'MMM D YYYY H:mmA').humanize(locale='de')
...
'Jun 1 2005 1:33PM'
datetime.datetime(2005, 6, 1, 13, 33, tzinfo=tzutc())
'Wed, 1st Jun 2005 13:33'
'vor 11 Jahren'
'Aug 28 1999 12:00AM'
datetime.datetime(1999, 8, 28, 0, 0, tzinfo=tzutc())
'Sat, 28th Aug 1999 00:00'
'vor 17 Jahren'
看见http://arrow.readthedocs.io/en/latest/了解更多信息。
其他回答
Use:
emp = pd.read_csv("C:\\py\\programs\\pandas_2\\pandas\\employees.csv")
emp.info()
它显示“开始日期时间”列和“上次登录时间”都是数据帧中的“对象=字符串”:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):
First Name 933 non-null object
Gender 855 non-null object
Start Date 1000 non-null object
Last Login Time 1000 non-null object
Salary 1000 non-null int64
Bonus % 1000 non-null float64
Senior Management 933 non-null object
Team 957 non-null object
dtypes: float64(1), int64(1), object(6)
memory usage: 62.6+ KB
通过使用read_csv中的parse_dates选项,可以将字符串datetime转换为panda datetime格式。
emp = pd.read_csv("C:\\py\\programs\\pandas_2\\pandas\\employees.csv", parse_dates=["Start Date", "Last Login Time"])
emp.info()
输出:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):
First Name 933 non-null object
Gender 855 non-null object
Start Date 1000 non-null datetime64[ns]
Last Login Time 1000 non-null datetime64[ns]
Salary 1000 non-null int64
Bonus % 1000 non-null float64
Senior Management 933 non-null object
Team 957 non-null object
dtypes: datetime64[ns](2), float64(1), int64(1), object(4)
memory usage: 62.6+ KB
查看时间模块中的strptime。它是strftime的逆。
$ python
>>> import time
>>> my_time = time.strptime('Jun 1 2005 1:33PM', '%b %d %Y %I:%M%p')
time.struct_time(tm_year=2005, tm_mon=6, tm_mday=1,
tm_hour=13, tm_min=33, tm_sec=0,
tm_wday=2, tm_yday=152, tm_isdst=-1)
timestamp = time.mktime(my_time)
# convert time object to datetime
from datetime import datetime
my_datetime = datetime.fromtimestamp(timestamp)
# convert time object to date
from datetime import date
my_date = date.fromtimestamp(timestamp)
datetime.strptime将用户指定格式的输入字符串解析为时区原始日期时间对象:
>>> from datetime import datetime
>>> datetime.strptime('Jun 1 2005 1:33PM', '%b %d %Y %I:%M%p')
datetime.datetime(2005, 6, 1, 13, 33)
要使用现有的datetime对象获取日期对象,请使用.date()对其进行转换:
>>> datetime.strptime('Jun 1 2005', '%b %d %Y').date()
date(2005, 6, 1)
链接:
strptime文档:Python 2、Python 3strptime/strftime格式字符串文档:Python 2,Python 3strftime.org格式字符串备忘单
笔记:
strptime=“字符串解析时间”strftime=“字符串格式时间”
创建一个小的实用程序函数,如:
def date(datestr="", format="%Y-%m-%d"):
from datetime import datetime
if not datestr:
return datetime.today().date()
return datetime.strptime(datestr, format).date()
这是足够多功能的:
如果不传递任何参数,它将返回今天的日期。有一个日期格式作为默认值,您可以覆盖它。您可以轻松地修改它以返回日期时间。
您还可以查看dateparser:
dateparser提供了模块,可以在几乎网页上常见的任何字符串格式。
安装:
pip install dateparser
我认为这是解析日期的最简单方法。
最直接的方法是使用dateparser.parse函数,它包含了模块中的大部分功能。
示例代码:
import dateparser
t1 = 'Jun 1 2005 1:33PM'
t2 = 'Aug 28 1999 12:00AM'
dt1 = dateparser.parse(t1)
dt2 = dateparser.parse(t2)
print(dt1)
print(dt2)
输出:
2005-06-01 13:33:00
1999-08-28 00:00:00