如何将以下字符串转换为datetime对象?
"Jun 1 2005 1:33PM"
如何将以下字符串转换为datetime对象?
"Jun 1 2005 1:33PM"
当前回答
arrow为日期和时间提供了许多有用的函数。这段代码为这个问题提供了答案,并表明箭头还能够轻松格式化日期并显示其他地区的信息。
>>> import arrow
>>> dateStrings = [ 'Jun 1 2005 1:33PM', 'Aug 28 1999 12:00AM' ]
>>> for dateString in dateStrings:
... dateString
... arrow.get(dateString.replace(' ',' '), 'MMM D YYYY H:mmA').datetime
... arrow.get(dateString.replace(' ',' '), 'MMM D YYYY H:mmA').format('ddd, Do MMM YYYY HH:mm')
... arrow.get(dateString.replace(' ',' '), 'MMM D YYYY H:mmA').humanize(locale='de')
...
'Jun 1 2005 1:33PM'
datetime.datetime(2005, 6, 1, 13, 33, tzinfo=tzutc())
'Wed, 1st Jun 2005 13:33'
'vor 11 Jahren'
'Aug 28 1999 12:00AM'
datetime.datetime(1999, 8, 28, 0, 0, tzinfo=tzutc())
'Sat, 28th Aug 1999 00:00'
'vor 17 Jahren'
看见http://arrow.readthedocs.io/en/latest/了解更多信息。
其他回答
Use:
emp = pd.read_csv("C:\\py\\programs\\pandas_2\\pandas\\employees.csv")
emp.info()
它显示“开始日期时间”列和“上次登录时间”都是数据帧中的“对象=字符串”:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):
First Name 933 non-null object
Gender 855 non-null object
Start Date 1000 non-null object
Last Login Time 1000 non-null object
Salary 1000 non-null int64
Bonus % 1000 non-null float64
Senior Management 933 non-null object
Team 957 non-null object
dtypes: float64(1), int64(1), object(6)
memory usage: 62.6+ KB
通过使用read_csv中的parse_dates选项,可以将字符串datetime转换为panda datetime格式。
emp = pd.read_csv("C:\\py\\programs\\pandas_2\\pandas\\employees.csv", parse_dates=["Start Date", "Last Login Time"])
emp.info()
输出:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):
First Name 933 non-null object
Gender 855 non-null object
Start Date 1000 non-null datetime64[ns]
Last Login Time 1000 non-null datetime64[ns]
Salary 1000 non-null int64
Bonus % 1000 non-null float64
Senior Management 933 non-null object
Team 957 non-null object
dtypes: datetime64[ns](2), float64(1), int64(1), object(4)
memory usage: 62.6+ KB
如果您的字符串是ISO 8601格式,并且您有Python 3.7+,则可以使用以下简单代码:
import datetime
aDate = datetime.date.fromisoformat('2020-10-04')
日期和
import datetime
aDateTime = datetime.datetime.fromisoformat('2020-10-04 22:47:00')
用于包含日期和时间的字符串。如果包含时间戳,函数datetime.datetime.isoformat()支持以下格式:
YYYY-MM-DD[*HH[:MM[:SS[.fff[fff]]]][+HH:MM[:SS[.ffffff]]]]
其中*匹配任何单个字符。另请参见此处和此处。
查看时间模块中的strptime。它是strftime的逆。
$ python
>>> import time
>>> my_time = time.strptime('Jun 1 2005 1:33PM', '%b %d %Y %I:%M%p')
time.struct_time(tm_year=2005, tm_mon=6, tm_mday=1,
tm_hour=13, tm_min=33, tm_sec=0,
tm_wday=2, tm_yday=152, tm_isdst=-1)
timestamp = time.mktime(my_time)
# convert time object to datetime
from datetime import datetime
my_datetime = datetime.fromtimestamp(timestamp)
# convert time object to date
from datetime import date
my_date = date.fromtimestamp(timestamp)
我个人喜欢使用解析器模块的解决方案,这是这个问题的第二个答案,非常漂亮,因为您不必构造任何字符串文字就能使其工作。但是,一个缺点是它比strptime的公认答案慢了90%。
from dateutil import parser
from datetime import datetime
import timeit
def dt():
dt = parser.parse("Jun 1 2005 1:33PM")
def strptime():
datetime_object = datetime.strptime('Jun 1 2005 1:33PM', '%b %d %Y %I:%M%p')
print(timeit.timeit(stmt=dt, number=10**5))
print(timeit.timeit(stmt=strptime, number=10**5))
输出:
10.702968013429021.3627995655316933
只要你不反复做一百万次,我仍然认为解析器方法更方便,并且可以自动处理大多数时间格式。
如果您只需要日期格式,则可以通过传递单个字段(如:
>>> import datetime
>>> date = datetime.date(int('2017'),int('12'),int('21'))
>>> date
datetime.date(2017, 12, 21)
>>> type(date)
<type 'datetime.date'>
您可以传递拆分字符串值,将其转换为日期类型,如:
selected_month_rec = '2017-09-01'
date_formate = datetime.date(int(selected_month_rec.split('-')[0]),int(selected_month_rec.split('-')[1]),int(selected_month_rec.split('-')[2]))
您将获得日期格式的结果值。