我如何有效地获得一个NumPy数组中每个唯一值的频率计数?
>>> x = np.array([1,1,1,2,2,2,5,25,1,1])
>>> freq_count(x)
[(1, 5), (2, 3), (5, 1), (25, 1)]
我如何有效地获得一个NumPy数组中每个唯一值的频率计数?
>>> x = np.array([1,1,1,2,2,2,5,25,1,1])
>>> freq_count(x)
[(1, 5), (2, 3), (5, 1), (25, 1)]
当前回答
尽管这个问题已经得到了回答,但我建议使用一种不同的方法,即numpy.histogram。这样的函数给定一个序列,它返回其元素分组在箱子中的频率。
但是要注意:它在这个例子中是有效的,因为数字是整数。如果它们是实数,那么这个解就不适用了。
>>> from numpy import histogram
>>> y = histogram (x, bins=x.max()-1)
>>> y
(array([5, 3, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1]),
array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.,
12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22.,
23., 24., 25.]))
其他回答
尽管这个问题已经得到了回答,但我建议使用一种不同的方法,即numpy.histogram。这样的函数给定一个序列,它返回其元素分组在箱子中的频率。
但是要注意:它在这个例子中是有效的,因为数字是整数。如果它们是实数,那么这个解就不适用了。
>>> from numpy import histogram
>>> y = histogram (x, bins=x.max()-1)
>>> y
(array([5, 3, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1]),
array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.,
12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22.,
23., 24., 25.]))
from collections import Counter
x = array( [1,1,1,2,2,2,5,25,1,1] )
mode = counter.most_common(1)[0][0]
像这样的东西应该做到:
#create 100 random numbers
arr = numpy.random.random_integers(0,50,100)
#create a dictionary of the unique values
d = dict([(i,0) for i in numpy.unique(arr)])
for number in arr:
d[j]+=1 #increment when that value is found
另外,之前的这篇关于有效计算独特元素的文章似乎与您的问题非常相似,除非我遗漏了什么。
看看np.bincount:
http://docs.scipy.org/doc/numpy/reference/generated/numpy.bincount.html
import numpy as np
x = np.array([1,1,1,2,2,2,5,25,1,1])
y = np.bincount(x)
ii = np.nonzero(y)[0]
然后:
zip(ii,y[ii])
# [(1, 5), (2, 3), (5, 1), (25, 1)]
or:
np.vstack((ii,y[ii])).T
# array([[ 1, 5],
[ 2, 3],
[ 5, 1],
[25, 1]])
或者你想结合计数和唯一值。
你可以这样写freq_count:
def freq_count(data):
mp = dict();
for i in data:
if i in mp:
mp[i] = mp[i]+1
else:
mp[i] = 1
return mp