我如何才能找到(遍历)有向图中从/到给定节点的所有周期?
例如,我想要这样的东西:
A->B->A
A->B->C->A
而不是: B - > C > B
我如何才能找到(遍历)有向图中从/到给定节点的所有周期?
例如,我想要这样的东西:
A->B->A
A->B->C->A
而不是: B - > C > B
当前回答
澄清:
Strongly Connected Components will find all subgraphs that have at least one cycle in them, not all possible cycles in the graph. e.g. if you take all strongly connected components and collapse/group/merge each one of them into one node (i.e. a node per component), you'll get a tree with no cycles (a DAG actually). Each component (which is basically a subgraph with at least one cycle in it) can contain many more possible cycles internally, so SCC will NOT find all possible cycles, it will find all possible groups that have at least one cycle, and if you group them, then the graph will not have cycles. to find all simple cycles in a graph, as others mentioned, Johnson's algorithm is a candidate.
其他回答
http://www.me.utexas.edu/~bard/IP/Handouts/cycles.pdf
我曾经在面试中遇到过这样的问题,我怀疑你遇到过这种情况,你来这里寻求帮助。把这个问题分解成三个问题就容易多了。
如何确定下一个有效点 路线 你如何确定一个点是否存在 被使用 你如何避免越过 同样的观点
问题1) 使用迭代器模式提供迭代路由结果的方法。放置获取下一个路由的逻辑的一个好地方可能是迭代器的“moveNext”。要找到有效的路由,这取决于您的数据结构。对我来说,这是一个sql表充满有效的路由可能性,所以我必须建立一个查询,以获得有效的目的地给定的源。
问题2) 当您找到每个节点时,将它们推入一个集合,这意味着您可以通过动态询问正在构建的集合,很容易地查看是否在某个点上“返回”。
问题3) 如果在任何时候你看到你正在折回,你可以从集合中弹出东西并“后退”。然后从这一点开始,再次尝试“前进”。
黑客:如果你正在使用Sql Server 2008,有一些新的“层次结构”的东西,你可以用它来快速解决这个问题,如果你把你的数据结构成树状。
我在搜索中找到了这个页面,由于循环与强连接组件不相同,我继续搜索,最后,我找到了一个高效的算法,它列出了有向图的所有(基本)循环。这篇论文来自唐纳德·b·约翰逊(Donald B. Johnson),可以在以下链接中找到:
http://www.cs.tufts.edu/comp/150GA/homeworks/hw1/Johnson%2075.PDF
java实现可以在下面找到:
http://normalisiert.de/code/java/elementaryCycles.zip
约翰逊算法的Mathematica演示可以在这里找到,实现可以从右边下载(“下载作者代码”)。
注:实际上,这个问题有很多算法。本文列举了其中一些:
http://dx.doi.org/10.1137/0205007
根据文章,Johnson的算法是最快的。
基于dfs的带有后边缘的变体确实会发现循环,但在许多情况下,它不会是最小循环。一般来说,DFS给出了存在循环的标志,但它不足以真正找到循环。例如,想象5个不同的循环共用两条边。仅仅使用DFS(包括回溯变量)没有简单的方法来识别周期。
Johnson算法确实给出了所有唯一的简单循环,并具有良好的时间和空间复杂度。
但如果你只想找到最小循环(意味着可能有多个循环通过任何顶点,我们感兴趣的是找到最小循环),并且你的图不是很大,你可以尝试使用下面的简单方法。 它非常简单,但与约翰逊的相比相当慢。
So, one of the absolutely easiest way to find MINIMAL cycles is to use Floyd's algorithm to find minimal paths between all the vertices using adjacency matrix. This algorithm is nowhere near as optimal as Johnson's, but it is so simple and its inner loop is so tight that for smaller graphs (<=50-100 nodes) it absolutely makes sense to use it. Time complexity is O(n^3), space complexity O(n^2) if you use parent tracking and O(1) if you don't. First of all let's find the answer to the question if there is a cycle. The algorithm is dead-simple. Below is snippet in Scala.
val NO_EDGE = Integer.MAX_VALUE / 2
def shortestPath(weights: Array[Array[Int]]) = {
for (k <- weights.indices;
i <- weights.indices;
j <- weights.indices) {
val throughK = weights(i)(k) + weights(k)(j)
if (throughK < weights(i)(j)) {
weights(i)(j) = throughK
}
}
}
Originally this algorithm operates on weighted-edge graph to find all shortest paths between all pairs of nodes (hence the weights argument). For it to work correctly you need to provide 1 if there is a directed edge between the nodes or NO_EDGE otherwise. After algorithm executes, you can check the main diagonal, if there are values less then NO_EDGE than this node participates in a cycle of length equal to the value. Every other node of the same cycle will have the same value (on the main diagonal).
为了重建周期本身,我们需要使用带有父跟踪的稍微修改版本的算法。
def shortestPath(weights: Array[Array[Int]], parents: Array[Array[Int]]) = {
for (k <- weights.indices;
i <- weights.indices;
j <- weights.indices) {
val throughK = weights(i)(k) + weights(k)(j)
if (throughK < weights(i)(j)) {
parents(i)(j) = k
weights(i)(j) = throughK
}
}
}
如果顶点之间有边,父矩阵最初应该包含边缘单元中的源顶点索引,否则为-1。 函数返回后,对于每条边,您都将引用到最短路径树中的父节点。 然后很容易恢复实际的循环。
总之,我们有下面的程序来求所有的最小循环
val NO_EDGE = Integer.MAX_VALUE / 2;
def shortestPathWithParentTracking(
weights: Array[Array[Int]],
parents: Array[Array[Int]]) = {
for (k <- weights.indices;
i <- weights.indices;
j <- weights.indices) {
val throughK = weights(i)(k) + weights(k)(j)
if (throughK < weights(i)(j)) {
parents(i)(j) = parents(i)(k)
weights(i)(j) = throughK
}
}
}
def recoverCycles(
cycleNodes: Seq[Int],
parents: Array[Array[Int]]): Set[Seq[Int]] = {
val res = new mutable.HashSet[Seq[Int]]()
for (node <- cycleNodes) {
var cycle = new mutable.ArrayBuffer[Int]()
cycle += node
var other = parents(node)(node)
do {
cycle += other
other = parents(other)(node)
} while(other != node)
res += cycle.sorted
}
res.toSet
}
还有一个小的main方法来测试结果
def main(args: Array[String]): Unit = {
val n = 3
val weights = Array(Array(NO_EDGE, 1, NO_EDGE), Array(NO_EDGE, NO_EDGE, 1), Array(1, NO_EDGE, NO_EDGE))
val parents = Array(Array(-1, 1, -1), Array(-1, -1, 2), Array(0, -1, -1))
shortestPathWithParentTracking(weights, parents)
val cycleNodes = parents.indices.filter(i => parents(i)(i) < NO_EDGE)
val cycles: Set[Seq[Int]] = recoverCycles(cycleNodes, parents)
println("The following minimal cycle found:")
cycles.foreach(c => println(c.mkString))
println(s"Total: ${cycles.size} cycle found")
}
输出是
The following minimal cycle found:
012
Total: 1 cycle found
在无向图的情况下,最近发表的一篇论文(无向图中循环和st路径的最优列表)提供了一个渐近最优解。你可以在这里阅读http://arxiv.org/abs/1205.2766或http://dl.acm.org/citation.cfm?id=2627951 我知道它不能回答你的问题,但由于你的问题标题没有提到方向,它可能仍然对谷歌搜索有用