这是C++代码的一块 显示一些非常特殊的行为
由于某种原因,对数据进行分类(在时间区之前)奇迹般地使主要循环速度快近六倍:
#include
#include
#include
int main()
{
// Generate data
const unsigned arraySize = 32768;
int data[arraySize];
for (unsigned c = 0; c < arraySize; ++c)
data[c] = std::rand() % 256;
// !!! With this, the next loop runs faster.
std::sort(data, data + arraySize);
// Test
clock_t start = clock();
long long sum = 0;
for (unsigned i = 0; i < 100000; ++i)
{
for (unsigned c = 0; c < arraySize; ++c)
{ // Primary loop.
if (data[c] >= 128)
sum += data[c];
}
}
double elapsedTime = static_cast(clock()-start) / CLOCKS_PER_SEC;
std::cout << elapsedTime << '\n';
std::cout << "sum = " << sum << '\n';
}
没有 std: sort( 数据, 数据+数组Size); 代码在 11. 54 秒内运行。 有了分类数据, 代码在 1. 93 秒内运行 。
(分类本身需要的时间比这个通过数组的时间要长, 所以如果我们需要计算未知数组, 它实际上不值得做 。)
起初,我以为这只是一种语言或编译器异常, 所以我尝试了爪哇:
import java.util.Arrays;
import java.util.Random;
public class Main
{
public static void main(String[] args)
{
// Generate data
int arraySize = 32768;
int data[] = new int[arraySize];
Random rnd = new Random(0);
for (int c = 0; c < arraySize; ++c)
data[c] = rnd.nextInt() % 256;
// !!! With this, the next loop runs faster
Arrays.sort(data);
// Test
long start = System.nanoTime();
long sum = 0;
for (int i = 0; i < 100000; ++i)
{
for (int c = 0; c < arraySize; ++c)
{ // Primary loop.
if (data[c] >= 128)
sum += data[c];
}
}
System.out.println((System.nanoTime() - start) / 1000000000.0);
System.out.println("sum = " + sum);
}
}
其结果类似,但不太极端。
我的第一个想法是排序 将数据带入缓存, 但这是愚蠢的,因为数组 刚刚生成。
为什么处理一个分类阵列的速度要快于处理一个未分类阵列的速度?
守则正在总结一些独立的术语,因此命令不应重要。
与不同的/后来的汇编者和备选办法具有相同效果:
为什么处理一个未排列的阵列的速度与处理一个用现代 x86-64 叮当的排序阵列的速度相同? gcc 优化标记 -O3 使代码慢于 -O2
Bjarne Stroustrup对此问题的答复:
这听起来像面试问题。是真的吗?你怎么知道?回答效率问题而不首先做一些测量是不明智的,所以知道如何衡量是很重要的。
于是,我用百万整数的矢量尝试过,然后得到:
Already sorted 32995 milliseconds
Shuffled 125944 milliseconds
Already sorted 18610 milliseconds
Shuffled 133304 milliseconds
Already sorted 17942 milliseconds
Shuffled 107858 milliseconds
我跑了好几次才确定。 是的,这个现象是真实的。我的关键代码是:
void run(vector<int>& v, const string& label)
{
auto t0 = system_clock::now();
sort(v.begin(), v.end());
auto t1 = system_clock::now();
cout << label
<< duration_cast<microseconds>(t1 — t0).count()
<< " milliseconds\n";
}
void tst()
{
vector<int> v(1'000'000);
iota(v.begin(), v.end(), 0);
run(v, "already sorted ");
std::shuffle(v.begin(), v.end(), std::mt19937{ std::random_device{}() });
run(v, "shuffled ");
}
至少这个编译器、 标准库和优化设置是真实存在的。 不同的执行可以而且确实提供了不同的答案。 事实上,有人做了更系统的研究( 快速的网络搜索会找到它) , 而大多数执行都显示了这种效果。
原因之一是分支预测:类式算法中的关键操作是“if(v)(i) < pivot] ” 或等效。对于一个分类序列,测试总是真实的,而对于随机序列,选择的分支则随机变化。
另一个原因是,当矢量已经分类后,我们从不需要将元素移到正确位置。这些小细节的影响是我们看到的5或6个系数。
Quicksort(以及一般分类)是一项复杂的研究,吸引了计算机科学中最伟大的一些思想。 一种良好的功能是选择良好的算法和关注硬件的运行效果的结果。
如果您想要写入高效代码, 您需要了解一些关于机器结构的知识 。
我用MATLAB 2011b 和我的MacBook Pro(Intel i7, 64位, 2.4 GHz) 尝试了以下MATLAB 代码的相同代码 :
% Processing time with Sorted data vs unsorted data
%==========================================================================
% Generate data
arraySize = 32768
sum = 0;
% Generate random integer data from range 0 to 255
data = randi(256, arraySize, 1);
%Sort the data
data1= sort(data); % data1= data when no sorting done
%Start a stopwatch timer to measure the execution time
tic;
for i=1:100000
for j=1:arraySize
if data1(j)>=128
sum=sum + data1(j);
end
end
end
toc;
ExeTimeWithSorting = toc - tic;
上述MATLAB代码的结果如下:
a: Elapsed time (without sorting) = 3479.880861 seconds.
b: Elapsed time (with sorting ) = 2377.873098 seconds.
校对:Soup
a: Elapsed time (without sorting) = 19.8761 sec.
b: Elapsed time (with sorting ) = 7.37778 sec.
基于这一点,看来MATLAB比C执行慢了175倍,没有分类,比C执行慢了350倍,换言之,(分支预测)MATLAB执行效果为1.46x,C执行效果为2.7x。
由于一种被称为分支预测的现象,分类的阵列的处理速度要快于未排序的阵列。
分支预测器是一个数字电路(在计算机结构中),它试图预测一个分支会走哪条路,从而改善教学管道的流量。电路/计算机预测下一步并进行执行。
错误的预测导致回到前一步,执行另一个预测。 假设预测是正确的,代码将持续到下一步骤。 错误的预测导致重复同一步骤,直到出现正确的预测。
你问题的答案很简单
在未排列的阵列中,计算机进行多次预测,导致误差的可能性增加。而在分类的阵列中,计算机的预测减少,误差的可能性减少。 做更多的预测需要更多的时间。
排序的数组: 直路
____________________________________________________________________________________
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
未排列的队列: 曲线路
______ ________
| |__|
部门预测: 猜测/预测哪条道路是直的,未检查就沿着这条道路走
___________________________________________ Straight road
|_________________________________________|Longer road
虽然两条道路都到达同一目的地,但直路更短,另一条更长。如果你错误地选择另一条道路,就没有回头路,所以如果你选择更长的路,你就会浪费一些更多的时间。这与计算机中发生的事情相似,我希望这能帮助你更好地了解。
@Simon_Weaver在评论中也提到:
它不会减少预测数量 — — 它会减少不正确的预测。 它仍然必须通过循环预测每一次...
官方的回答是来自
英特尔 -- -- 避免误用英特尔分公司的成本 -- -- 分公司和循环重组以防止误用科学论文 -- -- 分公司预测计算机建筑书籍:J.L. Hennessy, D.A. Patterson:计算机结构:定量方法 科学出版物中的文章:T.Y. Yeh, Y.N. Patt在分支预测方面做了许多这些。
你也可以从这张可爱的图表中看到 树枝预测器为什么会被混淆。
调
原始代码中的每个元素都是随机值
data[c] = std::rand() % 256;
所以预测器会随着 : rand () 的打击而改变两边。
另一方面,一旦对预测进行分类, 预测器将首先进入一个 强烈未被采纳的状态, 当值变化到高值时, 预测器将分三步走, 从强烈未被采纳到强烈被采纳。