@符号在Python中做什么?
当前回答
如果您引用的是python笔记本中使用Numpy库的一些代码,则@operator表示矩阵乘法。例如:
import numpy as np
def forward(xi, W1, b1, W2, b2):
z1 = W1 @ xi + b1
a1 = sigma(z1)
z2 = W2 @ a1 + b2
return z2, a1
其他回答
在Python 3.5中,可以将@重载为运算符。它被命名为__matmul__,因为它被设计用于矩阵乘法,但它可以是任何你想要的。详见PEP465。
这是矩阵乘法的简单实现。
class Mat(list):
def __matmul__(self, B):
A = self
return Mat([[sum(A[i][k]*B[k][j] for k in range(len(B)))
for j in range(len(B[0])) ] for i in range(len(A))])
A = Mat([[1,3],[7,5]])
B = Mat([[6,8],[4,2]])
print(A @ B)
此代码产生:
[[18, 14], [62, 66]]
@符号还用于访问plydata/pandas数据帧查询pandas.dataframe.query中的变量。例子:
df = pandas.DataFrame({'foo': [1,2,15,17]})
y = 10
df >> query('foo > @y') # plydata
df.query('foo > @y') # pandas
它表示您正在使用装饰器。这是布鲁斯·埃克尔2008年的例子。
Python装饰器就像函数或类的包装器。这还是太概念化了。
def function_decorator(func):
def wrapped_func():
# Do something before the function is executed
func()
# Do something after the function has been executed
return wrapped_func
上面的代码是装饰函数的装饰器的定义。function_decorator是装饰器的名称。
wrapped_func是内部函数的名称,实际上它只在这个decorator定义中使用。func是被修饰的函数。在内部函数wrapped_func中,我们可以在调用func之前和之后执行任何操作。在定义了decorator之后,我们只需按如下方式使用它。
@function_decorator
def func():
pass
然后,每当我们调用函数func时,我们在decorator中定义的行为也将被执行。
例子:
from functools import wraps
def mydecorator(f):
@wraps(f)
def wrapped(*args, **kwargs):
print "Before decorated function"
r = f(*args, **kwargs)
print "After decorated function"
return r
return wrapped
@mydecorator
def myfunc(myarg):
print "my function", myarg
return "return value"
r = myfunc('asdf')
print r
输出:
Before decorated function
my function asdf
After decorated function
return value
从Python 3.5开始,“@”用作矩阵乘法的专用中缀符号(PEP 0465——请参见https://www.python.org/dev/peps/pep-0465/)
推荐文章
- Visual Studio Code:如何调试Python脚本的参数
- 使用元组/列表等等。从输入vs直接引用类型如list/tuple/etc
- 结合conda环境。Yml和PIP requirements.txt
- 将命名元组转换为字典
- 如何使x轴和y轴的刻度相等呢?
- Numpy在这里函数多个条件
- 在Python中,使用argparse只允许正整数
- 如何排序mongodb与pymongo
- 不可变与可变类型
- 列表是线程安全的吗?
- 操作系统。makdirs在我的路径上不理解“~”
- 如何在Django模板中获得我的网站的域名?
- 在django Forms中定义css类
- 如何在Python中scp ?
- Numpy Max vs amax vs maximum