我已经在我的ubuntu 16.04中安装了tensorflow,使用的是ubuntu内置的apt cuda安装。

现在我的问题是,我如何测试tensorflow是否真的使用gpu?我有一个gtx 960m gpu。当我导入tensorflow时,这是输出

I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcurand.so locally

这个输出是否足够检查tensorflow是否使用gpu ?


当前回答

在Jupyter或你的IDE中运行这个命令,检查Tensorflow是否使用GPU:

其他回答

我找到了最简单、最全面的方法。只要设置tf.debug .set_log_device_placement(True),你就可以看到ops是否真的在GPU上运行,例如在device /job:localhost/replica:0/task:0/device:GPU:0中执行op _EagerConst

更多文档:https://www.tensorflow.org/guide/gpu#logging_device_placement

把这个放在jupyter笔记本的最上面。注释掉你不需要的东西。

# confirm TensorFlow sees the GPU
from tensorflow.python.client import device_lib
assert 'GPU' in str(device_lib.list_local_devices())

# confirm Keras sees the GPU (for TensorFlow 1.X + Keras)
from keras import backend
assert len(backend.tensorflow_backend._get_available_gpus()) > 0

# confirm PyTorch sees the GPU
from torch import cuda
assert cuda.is_available()
assert cuda.device_count() > 0
print(cuda.get_device_name(cuda.current_device()))

注意:随着TensorFlow 2.0的发布,Keras现在被包含在TF API中。

原来在这里回答。

你可以通过运行下面的代码来检查你是否正在使用GPU:

import tensorflow as tf
tf.test.gpu_device_name()

如果输出是“,这意味着你只使用CPU; 如果输出类似于/device:GPU:0,这意味着GPU工作。


并使用下面的代码来检查您使用的GPU:

from tensorflow.python.client import device_lib 
device_lib.list_local_devices()

你有一些选项来测试你的TensorFlow安装是否正在使用GPU加速。

您可以在三种不同的平台上输入以下命令。

import tensorflow as tf
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

Jupyter Notebook -检查运行Jupyter Notebook的控制台。你将能够看到GPU正在被使用。 Python Shell -你将能够直接看到输出。(注意-不要将第二个命令的输出分配给变量'sess';如果这有帮助的话)。 Spyder -在控制台中输入以下命令。 将tensorflow导入为tf tf.test.is_gpu_available ()

也许可以试试这个:

print(tf.reduce_sum(tf.random. sum);正常((1000、1000))))

看系统是否返回张量

根据网站