我已经在我的ubuntu 16.04中安装了tensorflow,使用的是ubuntu内置的apt cuda安装。

现在我的问题是,我如何测试tensorflow是否真的使用gpu?我有一个gtx 960m gpu。当我导入tensorflow时,这是输出

I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcurand.so locally

这个输出是否足够检查tensorflow是否使用gpu ?


当前回答

我找到了最简单、最全面的方法。只要设置tf.debug .set_log_device_placement(True),你就可以看到ops是否真的在GPU上运行,例如在device /job:localhost/replica:0/task:0/device:GPU:0中执行op _EagerConst

更多文档:https://www.tensorflow.org/guide/gpu#logging_device_placement

其他回答

你有一些选项来测试你的TensorFlow安装是否正在使用GPU加速。

您可以在三种不同的平台上输入以下命令。

import tensorflow as tf
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

Jupyter Notebook -检查运行Jupyter Notebook的控制台。你将能够看到GPU正在被使用。 Python Shell -你将能够直接看到输出。(注意-不要将第二个命令的输出分配给变量'sess';如果这有帮助的话)。 Spyder -在控制台中输入以下命令。 将tensorflow导入为tf tf.test.is_gpu_available ()

好的,首先从终端启动一个ipython shell,然后导入TensorFlow:

$ ipython --pylab
Python 3.6.5 |Anaconda custom (64-bit)| (default, Apr 29 2018, 16:14:56) 
Type 'copyright', 'credits' or 'license' for more information
IPython 6.4.0 -- An enhanced Interactive Python. Type '?' for help.
Using matplotlib backend: Qt5Agg

In [1]: import tensorflow as tf

现在,我们可以在控制台中使用以下命令查看GPU内存的使用情况:

# realtime update for every 2s
$ watch -n 2 nvidia-smi

因为我们只导入了TensorFlow,但还没有使用任何GPU,所以使用统计数据将是:

注意GPU内存使用非常少(~ 700MB);有时GPU内存使用甚至可能低至0 MB。


现在,让我们在代码中加载GPU。如tf文档所示,请执行:

In [2]: sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

现在,手表的统计数据应该显示一个更新的GPU使用内存如下:

现在观察一下我们在ipython shell中的Python进程是如何使用大约7 GB的GPU内存的。


附注:你可以在代码运行时继续观察这些统计数据,看看随着时间的推移GPU的使用有多激烈。

我认为有一种更简单的方法来实现这一点。

import tensorflow as tf
if tf.test.gpu_device_name():
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
else:
    print("Please install GPU version of TF")

它通常是这样的

Default GPU Device: /device:GPU:0

对我来说,这似乎比那些冗长的日志更容易。

编辑: 对TF 1进行了测试。x版本。我从来没有机会做TF 2.0或以上的东西,所以请记住。

对于TF2.4+, tensorflow网站上列出的“官方”方法来检查TF是否使用GPU

>>> import tensorflow as tf
>>> print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
Num GPUs Available:  2

下面还将返回GPU设备的名称。

import tensorflow as tf
tf.test.gpu_device_name()