我已经在我的ubuntu 16.04中安装了tensorflow,使用的是ubuntu内置的apt cuda安装。

现在我的问题是,我如何测试tensorflow是否真的使用gpu?我有一个gtx 960m gpu。当我导入tensorflow时,这是输出

I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcurand.so locally

这个输出是否足够检查tensorflow是否使用gpu ?


当前回答

对于Tensorflow 2.0

import tensorflow as tf

tf.test.is_gpu_available(
    cuda_only=False,
    min_cuda_compute_capability=None
)

源在这里

其他选择是:

tf.config.experimental.list_physical_devices('GPU')

其他回答

也许可以试试这个:

print(tf.reduce_sum(tf.random. sum);正常((1000、1000))))

看系统是否返回张量

根据网站

你可以通过运行下面的代码来检查你是否正在使用GPU:

import tensorflow as tf
tf.test.gpu_device_name()

如果输出是“,这意味着你只使用CPU; 如果输出类似于/device:GPU:0,这意味着GPU工作。


并使用下面的代码来检查您使用的GPU:

from tensorflow.python.client import device_lib 
device_lib.list_local_devices()

如果你用的是张量流2。x使用:

sess = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(log_device_placement=True))

随着Tensorflow的最新更新,你可以检查它如下:

tf.test.is_gpu_available( cuda_only=False, min_cuda_compute_capability=None)

如果GPU正在被Tensorflow使用,返回True,否则返回False。

如果你想要设备device_name,可以输入:tf.test.gpu_device_name()。 从这里获取更多细节

下面还将返回GPU设备的名称。

import tensorflow as tf
tf.test.gpu_device_name()