我已经在我的ubuntu 16.04中安装了tensorflow,使用的是ubuntu内置的apt cuda安装。

现在我的问题是,我如何测试tensorflow是否真的使用gpu?我有一个gtx 960m gpu。当我导入tensorflow时,这是输出

I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcurand.so locally

这个输出是否足够检查tensorflow是否使用gpu ?


当前回答

这应该会给出Tensorflow可用的设备列表(Py-3.6下):

tf = tf.Session(config=tf.ConfigProto(log_device_placement=True))
tf.list_devices()
# _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 268435456)

其他回答

Tensorflow 2.1

一个简单的计算,可以用nvidia-smi验证GPU上的内存使用情况。

import tensorflow as tf 

c1 = []
n = 10

def matpow(M, n):
    if n < 1: #Abstract cases where n < 1
        return M
    else:
        return tf.matmul(M, matpow(M, n-1))

with tf.device('/gpu:0'):
    a = tf.Variable(tf.random.uniform(shape=(10000, 10000)), name="a")
    b = tf.Variable(tf.random.uniform(shape=(10000, 10000)), name="b")
    c1.append(matpow(a, n))
    c1.append(matpow(b, n))

你可以通过运行下面的代码来检查你是否正在使用GPU:

import tensorflow as tf
tf.test.gpu_device_name()

如果输出是“,这意味着你只使用CPU; 如果输出类似于/device:GPU:0,这意味着GPU工作。


并使用下面的代码来检查您使用的GPU:

from tensorflow.python.client import device_lib 
device_lib.list_local_devices()

不,我不认为“开放CUDA库”足以说明问题,因为图的不同节点可能在不同的设备上。

当使用tensorflow2时:

print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))

对于tensorflow1,要找出使用了哪个设备,您可以像这样启用日志设备放置:

sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

检查控制台中是否有这种类型的输出。

更新为tensorflow >= 2.1

检查TensorFlow是否使用GPU的推荐方法如下:

tf.config.list_physical_devices('GPU') 

从TensorFlow 2.1开始,tf.test.gpu_device_name()已经被弃用,取而代之的是前面提到的。

然后,在终端中,您可以使用nvidia-smi检查有多少GPU内存已分配;同时,使用watch -n K nvidia-smi会告诉你,例如每K秒你使用了多少内存(你可能想使用K = 1实时)

如果你有多个GPU,你想使用多个网络,每个网络都在一个独立的GPU上,你可以使用:

 with tf.device('/GPU:0'):
      neural_network_1 = initialize_network_1()
 with tf.device('/GPU:1'):
      neural_network_2 = initialize_network_2()

我发现下面的代码片段非常方便测试gpu ..

Tensorflow 2.0测试

import tensorflow as tf
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
with tf.device('/gpu:0'):
    a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
    b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
    c = tf.matmul(a, b)

with tf.Session() as sess:
    print (sess.run(c))

张量流测试

import tensorflow as tf
with tf.device('/gpu:0'):
    a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
    b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
    c = tf.matmul(a, b)

with tf.Session() as sess:
    print (sess.run(c))