给定一个一维下标数组:

a = array([1, 0, 3])

我想把它编码成一个2D数组:

b = array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])

当前回答

为了详细说明K3—rnc的优秀答案,这里有一个更通用的版本:

def onehottify(x, n=None, dtype=float):
    """1-hot encode x with the max value n (computed from data if n is None)."""
    x = np.asarray(x)
    n = np.max(x) + 1 if n is None else n
    return np.eye(n, dtype=dtype)[x]

此外,这里是这个方法的快速和粗略的基准测试,以及YXD目前接受的答案(略有更改,以便他们提供相同的API,除了后者只适用于1D ndarray):

def onehottify_only_1d(x, n=None, dtype=float):
    x = np.asarray(x)
    n = np.max(x) + 1 if n is None else n
    b = np.zeros((len(x), n), dtype=dtype)
    b[np.arange(len(x)), x] = 1
    return b

后一种方法快35% (MacBook Pro 13 2015),但前一种更通用:

>>> import numpy as np
>>> np.random.seed(42)
>>> a = np.random.randint(0, 9, size=(10_000,))
>>> a
array([6, 3, 7, ..., 5, 8, 6])
>>> %timeit onehottify(a, 10)
188 µs ± 5.03 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
>>> %timeit onehottify_only_1d(a, 10)
139 µs ± 2.78 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

其他回答

创建一个有足够列的零数组b,即a.max() + 1。 然后,对于每一行i,设置第a[i]列为1。

>>> a = np.array([1, 0, 3])
>>> b = np.zeros((a.size, a.max() + 1))
>>> b[np.arange(a.size), a] = 1

>>> b
array([[ 0.,  1.,  0.,  0.],
       [ 1.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  1.]])

这是一个与维度无关的独立解决方案。

这将把任何非负整数的N维数组arr转换为一个N+1维数组one_hot,其中one_hot[i_1,…,i_N,c] = 1表示arr[i_1,…,i_N] = c.可以通过np恢复输入。argmax (one_hot, 1)

def expand_integer_grid(arr, n_classes):
    """

    :param arr: N dim array of size i_1, ..., i_N
    :param n_classes: C
    :returns: one-hot N+1 dim array of size i_1, ..., i_N, C
    :rtype: ndarray

    """
    one_hot = np.zeros(arr.shape + (n_classes,))
    axes_ranges = [range(arr.shape[i]) for i in range(arr.ndim)]
    flat_grids = [_.ravel() for _ in np.meshgrid(*axes_ranges, indexing='ij')]
    one_hot[flat_grids + [arr.ravel()]] = 1
    assert((one_hot.sum(-1) == 1).all())
    assert(np.allclose(np.argmax(one_hot, -1), arr))
    return one_hot

你也可以使用numpy的eye函数:

numpy。眼(类数)[包含标签的向量]

我添加了一个简单的补全函数,只使用numpy操作符:

   def probs_to_onehot(output_probabilities):
        argmax_indices_array = np.argmax(output_probabilities, axis=1)
        onehot_output_array = np.eye(np.unique(argmax_indices_array).shape[0])[argmax_indices_array.reshape(-1)]
        return onehot_output_array

它以一个概率矩阵作为输入:例如:

[[0.03038822 0.65810204 0.16549407 0.3797123] . [0.02771272 0.2760752 0.3280924 0.33458805]

它会返回

[[0 0 0 0]... [0 0 0 1]

如果你正在使用keras,有一个内置的实用程序:

from keras.utils.np_utils import to_categorical   

categorical_labels = to_categorical(int_labels, num_classes=3)

它与@YXD的答案几乎相同(请参阅源代码)。