我如何使Python字典成员访问通过点“。”?

例如,我想写mydict.val而不是mydict['val']。

我还想以这种方式访问嵌套字典。例如

mydict.mydict2.val 

会提到

mydict = { 'mydict2': { 'val': ... } }

当前回答

不喜欢。在Python中,属性访问和索引是分开的事情,您不应该希望它们执行相同的操作。创建一个类(可能是由namedtuple创建的),如果你有一些应该具有可访问属性的东西,并使用[]符号从字典中获取一个项。

其他回答

kaggle_environments使用的实现是一个名为structify的函数。

class Struct(dict):
    def __init__(self, **entries):
        entries = {k: v for k, v in entries.items() if k != "items"}
        dict.__init__(self, entries)
        self.__dict__.update(entries)

    def __setattr__(self, attr, value):
        self.__dict__[attr] = value
        self[attr] = value

# Added benefit of cloning lists and dicts.
def structify(o):
    if isinstance(o, list):
        return [structify(o[i]) for i in range(len(o))]
    elif isinstance(o, dict):
        return Struct(**{k: structify(v) for k, v in o.items()})
    return o

https://github.com/Kaggle/kaggle-environments/blob/master/kaggle_environments/utils.py

这可能有助于在《ConnectX》等游戏中测试AI模拟代理

from kaggle_environments import structify

obs  = structify({ 'remainingOverageTime': 60, 'step': 0, 'mark': 1, 'board': [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]})
conf = structify({ 'timeout': 2, 'actTimeout': 2, 'agentTimeout': 60, 'episodeSteps': 1000, 'runTimeout': 1200, 'columns': 7, 'rows': 6, 'inarow': 4, '__raw_path__': '/kaggle_simulations/agent/main.py' })

def agent(obs, conf):
  action = obs.step % conf.columns
  return action

用于无限级别的字典、列表、字典的列表和列表的字典的嵌套。

它还支持酸洗

这是这个答案的延伸。

class DotDict(dict):
    # https://stackoverflow.com/a/70665030/913098
    """
    Example:
    m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])

    Iterable are assumed to have a constructor taking list as input.
    """

    def __init__(self, *args, **kwargs):
        super(DotDict, self).__init__(*args, **kwargs)

        args_with_kwargs = []
        for arg in args:
            args_with_kwargs.append(arg)
        args_with_kwargs.append(kwargs)
        args = args_with_kwargs

        for arg in args:
            if isinstance(arg, dict):
                for k, v in arg.items():
                    self[k] = v
                    if isinstance(v, dict):
                        self[k] = DotDict(v)
                    elif isinstance(v, str) or isinstance(v, bytes):
                        self[k] = v
                    elif isinstance(v, Iterable):
                        klass = type(v)
                        map_value: List[Any] = []
                        for e in v:
                            map_e = DotDict(e) if isinstance(e, dict) else e
                            map_value.append(map_e)
                        self[k] = klass(map_value)



    def __getattr__(self, attr):
        return self.get(attr)

    def __setattr__(self, key, value):
        self.__setitem__(key, value)

    def __setitem__(self, key, value):
        super(DotDict, self).__setitem__(key, value)
        self.__dict__.update({key: value})

    def __delattr__(self, item):
        self.__delitem__(item)

    def __delitem__(self, key):
        super(DotDict, self).__delitem__(key)
        del self.__dict__[key]

    def __getstate__(self):
        return self.__dict__

    def __setstate__(self, d):
        self.__dict__.update(d)


if __name__ == "__main__":
    import pickle
    def test_map():
        d = {
            "a": 1,
            "b": {
                "c": "d",
                "e": 2,
                "f": None
            },
            "g": [],
            "h": [1, "i"],
            "j": [1, "k", {}],
            "l":
                [
                    1,
                    "m",
                    {
                        "n": [3],
                        "o": "p",
                        "q": {
                            "r": "s",
                            "t": ["u", 5, {"v": "w"}, ],
                            "x": ("z", 1)
                        }
                    }
                ],
        }
        map_d = DotDict(d)
        w = map_d.l[2].q.t[2].v
        assert w == "w"

        pickled = pickle.dumps(map_d)
        unpickled = pickle.loads(pickled)
        assert unpickled == map_d

        kwargs_check = DotDict(a=1, b=[dict(c=2, d="3"), 5])
        assert kwargs_check.b[0].d == "3"

        kwargs_and_args_check = DotDict(d, a=1, b=[dict(c=2, d="3"), 5])
        assert kwargs_and_args_check.l[2].q.t[2].v == "w"
        assert kwargs_and_args_check.b[0].d == "3"



    test_map()

我的观点:出于我自己的目的,我开发了minydra,一个简单的命令行解析器,包括一个自定义类MinyDict(灵感来自addict):


In [1]: from minydra import MinyDict

In [2]: args = MinyDict({"foo": "bar", "yes.no.maybe": "idontknow"}).pretty_print(); args
╭──────────────────────────────╮
│ foo          : bar           │
│ yes.no.maybe : idontknow     │
╰──────────────────────────────╯
Out[2]: {'foo': 'bar', 'yes.no.maybe': 'idontknow'}

In [3]: args.resolve().pretty_print(); args
╭──────────────────────────╮
│ foo : bar                │
│ yes                      │
│ │no                      │
│ │ │maybe : idontknow     │
╰──────────────────────────╯
Out[3]: {'foo': 'bar', 'yes': {'no': {'maybe': 'idontknow'}}}

In [4]: args.yes.no.maybe
Out[4]: "idontknow"

In [5]: "foo" in args
Out[5]: True

In [6]: "rick" in args
Out[6]: False

In [7]: args.morty is None
Out[7]: True

In [8]: args.items()
Out[8]: dict_items([('foo', 'bar'), ('yes', {'no': {'maybe': 'idontknow'}})])

它通过向json yaml和pickle添加转储/加载方法来上瘾,并且在MinyDict.update()中也有一个严格的模式来防止创建新键(这对于防止命令行中的错字很有用)

基于Kugel的回答,并考虑到Mike Graham的警告,如果我们制作一个包装器呢?

class DictWrap(object):
  """ Wrap an existing dict, or create a new one, and access with either dot 
    notation or key lookup.

    The attribute _data is reserved and stores the underlying dictionary.
    When using the += operator with create=True, the empty nested dict is 
    replaced with the operand, effectively creating a default dictionary
    of mixed types.

    args:
      d({}): Existing dict to wrap, an empty dict is created by default
      create(True): Create an empty, nested dict instead of raising a KeyError

    example:
      >>>dw = DictWrap({'pp':3})
      >>>dw.a.b += 2
      >>>dw.a.b += 2
      >>>dw.a['c'] += 'Hello'
      >>>dw.a['c'] += ' World'
      >>>dw.a.d
      >>>print dw._data
      {'a': {'c': 'Hello World', 'b': 4, 'd': {}}, 'pp': 3}

  """

  def __init__(self, d=None, create=True):
    if d is None:
      d = {}
    supr = super(DictWrap, self)  
    supr.__setattr__('_data', d)
    supr.__setattr__('__create', create)

  def __getattr__(self, name):
    try:
      value = self._data[name]
    except KeyError:
      if not super(DictWrap, self).__getattribute__('__create'):
        raise
      value = {}
      self._data[name] = value

    if hasattr(value, 'items'):
      create = super(DictWrap, self).__getattribute__('__create')
      return DictWrap(value, create)
    return value

  def __setattr__(self, name, value):
    self._data[name] = value  

  def __getitem__(self, key):
    try:
      value = self._data[key]
    except KeyError:
      if not super(DictWrap, self).__getattribute__('__create'):
        raise
      value = {}
      self._data[key] = value

    if hasattr(value, 'items'):
      create = super(DictWrap, self).__getattribute__('__create')
      return DictWrap(value, create)
    return value

  def __setitem__(self, key, value):
    self._data[key] = value

  def __iadd__(self, other):
    if self._data:
      raise TypeError("A Nested dict will only be replaced if it's empty")
    else:
      return other

我不喜欢在(超过)10年前的火灾中添加另一个日志,但我也会检查dotwiz库,它是我最近发布的——实际上就在今年。

它是一个相对较小的库,在基准测试中,它在get(访问)和设置(创建)时间方面也表现得非常好,至少与其他备选方案相比是这样。

通过pip安装dotwiz

pip install dotwiz

它能做你想让它做的所有事情,并继承dict的子类,所以它的操作就像一个普通的字典:

from dotwiz import DotWiz

dw = DotWiz()
dw.hello = 'world'
dw.hello
dw.hello += '!'
# dw.hello and dw['hello'] now both return 'world!'
dw.val = 5
dw.val2 = 'Sam'

最重要的是,你可以将它转换为dict对象:

d = dw.to_dict()
dw = DotWiz(d) # automatic conversion in constructor

这意味着如果你想访问的东西已经是dict形式的,你可以把它变成一个dotwz来方便访问:

import json
json_dict = json.loads(text)
data = DotWiz(json_dict)
print data.location.city

最后,我正在做的一些令人兴奋的事情是一个现有的特性请求,这样它就会自动创建新的子DotWiz实例,这样你就可以做这样的事情:

dw = DotWiz()
dw['people.steve.age'] = 31

dw
# ✫(people=✫(steve=✫(age=31)))

与点图比较

我在下面添加了一个快速而粗略的性能比较。

首先,用pip安装两个库:

pip install dotwiz dotmap

为了进行基准测试,我编写了以下代码:

from timeit import timeit

from dotwiz import DotWiz
from dotmap import DotMap


d = {'hey': {'so': [{'this': {'is': {'pretty': {'cool': True}}}}]}}

dw = DotWiz(d)
# ✫(hey=✫(so=[✫(this=✫(is=✫(pretty={'cool'})))]))

dm = DotMap(d)
# DotMap(hey=DotMap(so=[DotMap(this=DotMap(is=DotMap(pretty={'cool'})))]))

assert dw.hey.so[0].this['is'].pretty.cool == dm.hey.so[0].this['is'].pretty.cool

n = 100_000

print('dotwiz (create):  ', round(timeit('DotWiz(d)', number=n, globals=globals()), 3))
print('dotmap (create):  ', round(timeit('DotMap(d)', number=n, globals=globals()), 3))
print('dotwiz (get):  ', round(timeit("dw.hey.so[0].this['is'].pretty.cool", number=n, globals=globals()), 3))
print('dotmap (get):  ', round(timeit("dm.hey.so[0].this['is'].pretty.cool", number=n, globals=globals()), 3))

结果,在我的M1 Mac上运行Python 3.10:

dotwiz (create):   0.189
dotmap (create):   1.085
dotwiz (get):   0.014
dotmap (get):   0.335