我如何使Python字典成员访问通过点“。”?

例如,我想写mydict.val而不是mydict['val']。

我还想以这种方式访问嵌套字典。例如

mydict.mydict2.val 

会提到

mydict = { 'mydict2': { 'val': ... } }

当前回答

不喜欢。在Python中,属性访问和索引是分开的事情,您不应该希望它们执行相同的操作。创建一个类(可能是由namedtuple创建的),如果你有一些应该具有可访问属性的东西,并使用[]符号从字典中获取一个项。

其他回答

获得点访问(但不是数组访问)的一个简单方法是在Python中使用一个普通对象。是这样的:

class YourObject:
    def __init__(self, *args, **kwargs):
        for k, v in kwargs.items():
            setattr(self, k, v)

...像这样使用它:

>>> obj = YourObject(key="value")
>>> print(obj.key)
"value"

... 把它转换成字典:

>>> print(obj.__dict__)
{"key": "value"}

最简单的解决方案。

定义一个只有pass语句的类。为该类创建对象并使用点表示法。

class my_dict:
    pass

person = my_dict()
person.id = 1 # create using dot notation
person.phone = 9999
del person.phone # Remove a property using dot notation

name_data = my_dict()
name_data.first_name = 'Arnold'
name_data.last_name = 'Schwarzenegger'

person.name = name_data
person.name.first_name # dot notation access for nested properties - gives Arnold

I ended up trying BOTH the AttrDict and the Bunch libraries and found them to be way to slow for my uses. After a friend and I looked into it, we found that the main method for writing these libraries results in the library aggressively recursing through a nested object and making copies of the dictionary object throughout. With this in mind, we made two key changes. 1) We made attributes lazy-loaded 2) instead of creating copies of a dictionary object, we create copies of a light-weight proxy object. This is the final implementation. The performance increase of using this code is incredible. When using AttrDict or Bunch, these two libraries alone consumed 1/2 and 1/3 respectively of my request time(what!?). This code reduced that time to almost nothing(somewhere in the range of 0.5ms). This of course depends on your needs, but if you are using this functionality quite a bit in your code, definitely go with something simple like this.

class DictProxy(object):
    def __init__(self, obj):
        self.obj = obj

    def __getitem__(self, key):
        return wrap(self.obj[key])

    def __getattr__(self, key):
        try:
            return wrap(getattr(self.obj, key))
        except AttributeError:
            try:
                return self[key]
            except KeyError:
                raise AttributeError(key)

    # you probably also want to proxy important list properties along like
    # items(), iteritems() and __len__

class ListProxy(object):
    def __init__(self, obj):
        self.obj = obj

    def __getitem__(self, key):
        return wrap(self.obj[key])

    # you probably also want to proxy important list properties along like
    # __iter__ and __len__

def wrap(value):
    if isinstance(value, dict):
        return DictProxy(value)
    if isinstance(value, (tuple, list)):
        return ListProxy(value)
    return value

参见https://stackoverflow.com/users/704327/michael-merickel的原始实现。

另一件需要注意的事情是,这个实现非常简单,并且没有实现您可能需要的所有方法。您需要根据需要在DictProxy或ListProxy对象上写入这些内容。

如果你已经在使用pandas,你可以构造一个pandas Series或DataFrame,从中你可以通过点语法访问项目:

1级字典:

import pandas as pd

my_dictionary = pd.Series({
  'key1': 'value1',
  'key2': 'value2'
})

print(my_dictionary.key1)
# Output: value1

2级字典:

import pandas as pd

my_dictionary = pd.DataFrame({
  'key1': {
    'inner_key1': 'value1'
  },
  'key2': {
    'inner_key2': 'value2'
  }
})

print(my_dictionary.key1.inner_key1)
# Output: value1

请注意,这可能在规范化数据结构(其中每个字典条目都具有相同的结构)下工作得更好。在上面的第二个例子中,得到的DataFrame是:

              key1    key2
inner_key1  value1     NaN
inner_key2     NaN  value2

我不喜欢在(超过)10年前的火灾中添加另一个日志,但我也会检查dotwiz库,它是我最近发布的——实际上就在今年。

它是一个相对较小的库,在基准测试中,它在get(访问)和设置(创建)时间方面也表现得非常好,至少与其他备选方案相比是这样。

通过pip安装dotwiz

pip install dotwiz

它能做你想让它做的所有事情,并继承dict的子类,所以它的操作就像一个普通的字典:

from dotwiz import DotWiz

dw = DotWiz()
dw.hello = 'world'
dw.hello
dw.hello += '!'
# dw.hello and dw['hello'] now both return 'world!'
dw.val = 5
dw.val2 = 'Sam'

最重要的是,你可以将它转换为dict对象:

d = dw.to_dict()
dw = DotWiz(d) # automatic conversion in constructor

这意味着如果你想访问的东西已经是dict形式的,你可以把它变成一个dotwz来方便访问:

import json
json_dict = json.loads(text)
data = DotWiz(json_dict)
print data.location.city

最后,我正在做的一些令人兴奋的事情是一个现有的特性请求,这样它就会自动创建新的子DotWiz实例,这样你就可以做这样的事情:

dw = DotWiz()
dw['people.steve.age'] = 31

dw
# ✫(people=✫(steve=✫(age=31)))

与点图比较

我在下面添加了一个快速而粗略的性能比较。

首先,用pip安装两个库:

pip install dotwiz dotmap

为了进行基准测试,我编写了以下代码:

from timeit import timeit

from dotwiz import DotWiz
from dotmap import DotMap


d = {'hey': {'so': [{'this': {'is': {'pretty': {'cool': True}}}}]}}

dw = DotWiz(d)
# ✫(hey=✫(so=[✫(this=✫(is=✫(pretty={'cool'})))]))

dm = DotMap(d)
# DotMap(hey=DotMap(so=[DotMap(this=DotMap(is=DotMap(pretty={'cool'})))]))

assert dw.hey.so[0].this['is'].pretty.cool == dm.hey.so[0].this['is'].pretty.cool

n = 100_000

print('dotwiz (create):  ', round(timeit('DotWiz(d)', number=n, globals=globals()), 3))
print('dotmap (create):  ', round(timeit('DotMap(d)', number=n, globals=globals()), 3))
print('dotwiz (get):  ', round(timeit("dw.hey.so[0].this['is'].pretty.cool", number=n, globals=globals()), 3))
print('dotmap (get):  ', round(timeit("dm.hey.so[0].this['is'].pretty.cool", number=n, globals=globals()), 3))

结果,在我的M1 Mac上运行Python 3.10:

dotwiz (create):   0.189
dotmap (create):   1.085
dotwiz (get):   0.014
dotmap (get):   0.335