我如何使Python字典成员访问通过点“。”?
例如,我想写mydict.val而不是mydict['val']。
我还想以这种方式访问嵌套字典。例如
mydict.mydict2.val
会提到
mydict = { 'mydict2': { 'val': ... } }
我如何使Python字典成员访问通过点“。”?
例如,我想写mydict.val而不是mydict['val']。
我还想以这种方式访问嵌套字典。例如
mydict.mydict2.val
会提到
mydict = { 'mydict2': { 'val': ... } }
当前回答
不喜欢。在Python中,属性访问和索引是分开的事情,您不应该希望它们执行相同的操作。创建一个类(可能是由namedtuple创建的),如果你有一些应该具有可访问属性的东西,并使用[]符号从字典中获取一个项。
其他回答
kaggle_environments使用的实现是一个名为structify的函数。
class Struct(dict):
def __init__(self, **entries):
entries = {k: v for k, v in entries.items() if k != "items"}
dict.__init__(self, entries)
self.__dict__.update(entries)
def __setattr__(self, attr, value):
self.__dict__[attr] = value
self[attr] = value
# Added benefit of cloning lists and dicts.
def structify(o):
if isinstance(o, list):
return [structify(o[i]) for i in range(len(o))]
elif isinstance(o, dict):
return Struct(**{k: structify(v) for k, v in o.items()})
return o
https://github.com/Kaggle/kaggle-environments/blob/master/kaggle_environments/utils.py
这可能有助于在《ConnectX》等游戏中测试AI模拟代理
from kaggle_environments import structify
obs = structify({ 'remainingOverageTime': 60, 'step': 0, 'mark': 1, 'board': [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]})
conf = structify({ 'timeout': 2, 'actTimeout': 2, 'agentTimeout': 60, 'episodeSteps': 1000, 'runTimeout': 1200, 'columns': 7, 'rows': 6, 'inarow': 4, '__raw_path__': '/kaggle_simulations/agent/main.py' })
def agent(obs, conf):
action = obs.step % conf.columns
return action
用于无限级别的字典、列表、字典的列表和列表的字典的嵌套。
它还支持酸洗
这是这个答案的延伸。
class DotDict(dict):
# https://stackoverflow.com/a/70665030/913098
"""
Example:
m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])
Iterable are assumed to have a constructor taking list as input.
"""
def __init__(self, *args, **kwargs):
super(DotDict, self).__init__(*args, **kwargs)
args_with_kwargs = []
for arg in args:
args_with_kwargs.append(arg)
args_with_kwargs.append(kwargs)
args = args_with_kwargs
for arg in args:
if isinstance(arg, dict):
for k, v in arg.items():
self[k] = v
if isinstance(v, dict):
self[k] = DotDict(v)
elif isinstance(v, str) or isinstance(v, bytes):
self[k] = v
elif isinstance(v, Iterable):
klass = type(v)
map_value: List[Any] = []
for e in v:
map_e = DotDict(e) if isinstance(e, dict) else e
map_value.append(map_e)
self[k] = klass(map_value)
def __getattr__(self, attr):
return self.get(attr)
def __setattr__(self, key, value):
self.__setitem__(key, value)
def __setitem__(self, key, value):
super(DotDict, self).__setitem__(key, value)
self.__dict__.update({key: value})
def __delattr__(self, item):
self.__delitem__(item)
def __delitem__(self, key):
super(DotDict, self).__delitem__(key)
del self.__dict__[key]
def __getstate__(self):
return self.__dict__
def __setstate__(self, d):
self.__dict__.update(d)
if __name__ == "__main__":
import pickle
def test_map():
d = {
"a": 1,
"b": {
"c": "d",
"e": 2,
"f": None
},
"g": [],
"h": [1, "i"],
"j": [1, "k", {}],
"l":
[
1,
"m",
{
"n": [3],
"o": "p",
"q": {
"r": "s",
"t": ["u", 5, {"v": "w"}, ],
"x": ("z", 1)
}
}
],
}
map_d = DotDict(d)
w = map_d.l[2].q.t[2].v
assert w == "w"
pickled = pickle.dumps(map_d)
unpickled = pickle.loads(pickled)
assert unpickled == map_d
kwargs_check = DotDict(a=1, b=[dict(c=2, d="3"), 5])
assert kwargs_check.b[0].d == "3"
kwargs_and_args_check = DotDict(d, a=1, b=[dict(c=2, d="3"), 5])
assert kwargs_and_args_check.l[2].q.t[2].v == "w"
assert kwargs_and_args_check.b[0].d == "3"
test_map()
我的观点:出于我自己的目的,我开发了minydra,一个简单的命令行解析器,包括一个自定义类MinyDict(灵感来自addict):
In [1]: from minydra import MinyDict
In [2]: args = MinyDict({"foo": "bar", "yes.no.maybe": "idontknow"}).pretty_print(); args
╭──────────────────────────────╮
│ foo : bar │
│ yes.no.maybe : idontknow │
╰──────────────────────────────╯
Out[2]: {'foo': 'bar', 'yes.no.maybe': 'idontknow'}
In [3]: args.resolve().pretty_print(); args
╭──────────────────────────╮
│ foo : bar │
│ yes │
│ │no │
│ │ │maybe : idontknow │
╰──────────────────────────╯
Out[3]: {'foo': 'bar', 'yes': {'no': {'maybe': 'idontknow'}}}
In [4]: args.yes.no.maybe
Out[4]: "idontknow"
In [5]: "foo" in args
Out[5]: True
In [6]: "rick" in args
Out[6]: False
In [7]: args.morty is None
Out[7]: True
In [8]: args.items()
Out[8]: dict_items([('foo', 'bar'), ('yes', {'no': {'maybe': 'idontknow'}})])
它通过向json yaml和pickle添加转储/加载方法来上瘾,并且在MinyDict.update()中也有一个严格的模式来防止创建新键(这对于防止命令行中的错字很有用)
基于Kugel的回答,并考虑到Mike Graham的警告,如果我们制作一个包装器呢?
class DictWrap(object):
""" Wrap an existing dict, or create a new one, and access with either dot
notation or key lookup.
The attribute _data is reserved and stores the underlying dictionary.
When using the += operator with create=True, the empty nested dict is
replaced with the operand, effectively creating a default dictionary
of mixed types.
args:
d({}): Existing dict to wrap, an empty dict is created by default
create(True): Create an empty, nested dict instead of raising a KeyError
example:
>>>dw = DictWrap({'pp':3})
>>>dw.a.b += 2
>>>dw.a.b += 2
>>>dw.a['c'] += 'Hello'
>>>dw.a['c'] += ' World'
>>>dw.a.d
>>>print dw._data
{'a': {'c': 'Hello World', 'b': 4, 'd': {}}, 'pp': 3}
"""
def __init__(self, d=None, create=True):
if d is None:
d = {}
supr = super(DictWrap, self)
supr.__setattr__('_data', d)
supr.__setattr__('__create', create)
def __getattr__(self, name):
try:
value = self._data[name]
except KeyError:
if not super(DictWrap, self).__getattribute__('__create'):
raise
value = {}
self._data[name] = value
if hasattr(value, 'items'):
create = super(DictWrap, self).__getattribute__('__create')
return DictWrap(value, create)
return value
def __setattr__(self, name, value):
self._data[name] = value
def __getitem__(self, key):
try:
value = self._data[key]
except KeyError:
if not super(DictWrap, self).__getattribute__('__create'):
raise
value = {}
self._data[key] = value
if hasattr(value, 'items'):
create = super(DictWrap, self).__getattribute__('__create')
return DictWrap(value, create)
return value
def __setitem__(self, key, value):
self._data[key] = value
def __iadd__(self, other):
if self._data:
raise TypeError("A Nested dict will only be replaced if it's empty")
else:
return other
我不喜欢在(超过)10年前的火灾中添加另一个日志,但我也会检查dotwiz库,它是我最近发布的——实际上就在今年。
它是一个相对较小的库,在基准测试中,它在get(访问)和设置(创建)时间方面也表现得非常好,至少与其他备选方案相比是这样。
通过pip安装dotwiz
pip install dotwiz
它能做你想让它做的所有事情,并继承dict的子类,所以它的操作就像一个普通的字典:
from dotwiz import DotWiz
dw = DotWiz()
dw.hello = 'world'
dw.hello
dw.hello += '!'
# dw.hello and dw['hello'] now both return 'world!'
dw.val = 5
dw.val2 = 'Sam'
最重要的是,你可以将它转换为dict对象:
d = dw.to_dict()
dw = DotWiz(d) # automatic conversion in constructor
这意味着如果你想访问的东西已经是dict形式的,你可以把它变成一个dotwz来方便访问:
import json
json_dict = json.loads(text)
data = DotWiz(json_dict)
print data.location.city
最后,我正在做的一些令人兴奋的事情是一个现有的特性请求,这样它就会自动创建新的子DotWiz实例,这样你就可以做这样的事情:
dw = DotWiz()
dw['people.steve.age'] = 31
dw
# ✫(people=✫(steve=✫(age=31)))
与点图比较
我在下面添加了一个快速而粗略的性能比较。
首先,用pip安装两个库:
pip install dotwiz dotmap
为了进行基准测试,我编写了以下代码:
from timeit import timeit
from dotwiz import DotWiz
from dotmap import DotMap
d = {'hey': {'so': [{'this': {'is': {'pretty': {'cool': True}}}}]}}
dw = DotWiz(d)
# ✫(hey=✫(so=[✫(this=✫(is=✫(pretty={'cool'})))]))
dm = DotMap(d)
# DotMap(hey=DotMap(so=[DotMap(this=DotMap(is=DotMap(pretty={'cool'})))]))
assert dw.hey.so[0].this['is'].pretty.cool == dm.hey.so[0].this['is'].pretty.cool
n = 100_000
print('dotwiz (create): ', round(timeit('DotWiz(d)', number=n, globals=globals()), 3))
print('dotmap (create): ', round(timeit('DotMap(d)', number=n, globals=globals()), 3))
print('dotwiz (get): ', round(timeit("dw.hey.so[0].this['is'].pretty.cool", number=n, globals=globals()), 3))
print('dotmap (get): ', round(timeit("dm.hey.so[0].this['is'].pretty.cool", number=n, globals=globals()), 3))
结果,在我的M1 Mac上运行Python 3.10:
dotwiz (create): 0.189
dotmap (create): 1.085
dotwiz (get): 0.014
dotmap (get): 0.335