我如何使Python字典成员访问通过点“。”?

例如,我想写mydict.val而不是mydict['val']。

我还想以这种方式访问嵌套字典。例如

mydict.mydict2.val 

会提到

mydict = { 'mydict2': { 'val': ... } }

当前回答

这也适用于嵌套字典,并确保后面追加的字典行为相同:

class DotDict(dict):

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        # Recursively turn nested dicts into DotDicts
        for key, value in self.items():
            if type(value) is dict:
                self[key] = DotDict(value)

    def __setitem__(self, key, item):
        if type(item) is dict:
            item = DotDict(item)
        super().__setitem__(key, item)

    __setattr__ = __setitem__
    __getattr__ = dict.__getitem__

其他回答

你可以用我刚做的这个类来做。对于这个类,您可以像使用另一个字典(包括json序列化)一样使用Map对象,或者使用点表示法。希望对大家有所帮助:

class Map(dict):
    """
    Example:
    m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])
    """
    def __init__(self, *args, **kwargs):
        super(Map, self).__init__(*args, **kwargs)
        for arg in args:
            if isinstance(arg, dict):
                for k, v in arg.iteritems():
                    self[k] = v

        if kwargs:
            for k, v in kwargs.iteritems():
                self[k] = v

    def __getattr__(self, attr):
        return self.get(attr)

    def __setattr__(self, key, value):
        self.__setitem__(key, value)

    def __setitem__(self, key, value):
        super(Map, self).__setitem__(key, value)
        self.__dict__.update({key: value})

    def __delattr__(self, item):
        self.__delitem__(item)

    def __delitem__(self, key):
        super(Map, self).__delitem__(key)
        del self.__dict__[key]

使用例子:

m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])
# Add new key
m.new_key = 'Hello world!'
# Or
m['new_key'] = 'Hello world!'
print m.new_key
print m['new_key']
# Update values
m.new_key = 'Yay!'
# Or
m['new_key'] = 'Yay!'
# Delete key
del m.new_key
# Or
del m['new_key']

可以使用dotsi来支持完整列表、dict和递归,并使用一些扩展方法

pip install dotsi

and

>>> import dotsi
>>> 
>>> d = dotsi.Dict({"foo": {"bar": "baz"}})     # Basic
>>> d.foo.bar
'baz'
>>> d.users = [{"id": 0, "name": "Alice"}]   # List
>>> d.users[0].name
'Alice'
>>> d.users.append({"id": 1, "name": "Becca"}); # Append
>>> d.users[1].name
'Becca'
>>> d.users += [{"id": 2, "name": "Cathy"}];    # `+=`
>>> d.users[2].name
'Cathy'
>>> d.update({"tasks": [{"id": "a", "text": "Task A"}]});
>>> d.tasks[0].text
'Task A'
>>> d.tasks[0].tags = ["red", "white", "blue"];
>>> d.tasks[0].tags[2];
'blue'
>>> d.tasks[0].pop("tags")                      # `.pop()`
['red', 'white', 'blue']
>>> 
>>> import pprint
>>> pprint.pprint(d)
{'foo': {'bar': 'baz'},
 'tasks': [{'id': 'a', 'text': 'Task A'}],
 'users': [{'id': 0, 'name': 'Alice'},
           {'id': 1, 'name': 'Becca'},
           {'id': 2, 'name': 'Cathy'}]}
>>> 
>>> type(d.users)       # dotsi.Dict (AKA dotsi.DotsiDict)
<class 'dotsi.DotsiList'>
>>> type(d.users[0])    # dotsi.List (AKA dotsi.DotsiList)
<class 'dotsi.DotsiDict'> 
>>> 

通过pip安装dotmap

pip install dotmap

它能做你想让它做的所有事情,并继承dict的子类,所以它的操作就像一个普通的字典:

from dotmap import DotMap

m = DotMap()
m.hello = 'world'
m.hello
m.hello += '!'
# m.hello and m['hello'] now both return 'world!'
m.val = 5
m.val2 = 'Sam'

最重要的是,你可以将它转换为dict对象:

d = m.toDict()
m = DotMap(d) # automatic conversion in constructor

这意味着如果你想访问的东西已经是字典形式的,你可以把它转换成DotMap来方便访问:

import json
jsonDict = json.loads(text)
data = DotMap(jsonDict)
print data.location.city

最后,它会自动创建新的子DotMap实例,你可以这样做:

m = DotMap()
m.people.steve.age = 31

与Bunch的比较

完全公开:我是DotMap的创造者。我创建它是因为Bunch缺少这些功能

记住添加的顺序项并按此顺序迭代 自动创建子DotMap,当你有很多层次结构时,这节省了时间,并使代码更干净 从字典构造并递归地将所有子字典实例转换为DotMap

这是我从很久以前的一个项目里挖出来的。它可能还可以再优化一点,但就是这样了。

class DotNotation(dict):
    
    __setattr__= dict.__setitem__
    __delattr__= dict.__delitem__

    def __init__(self, data):
        if isinstance(data, str):
            data = json.loads(data)
    
        for name, value in data.items():
            setattr(self, name, self._wrap(value))

    def __getattr__(self, attr):
        def _traverse(obj, attr):
            if self._is_indexable(obj):
                try:
                    return obj[int(attr)]
                except:
                    return None
            elif isinstance(obj, dict):
                return obj.get(attr, None)
            else:
                return attr
        if '.' in attr:
            return reduce(_traverse, attr.split('.'), self)
        return self.get(attr, None)

    def _wrap(self, value):
        if self._is_indexable(value):
            # (!) recursive (!)
            return type(value)([self._wrap(v) for v in value])
        elif isinstance(value, dict):
            return DotNotation(value)
        else:
            return value
    
    @staticmethod
    def _is_indexable(obj):
        return isinstance(obj, (tuple, list, set, frozenset))


if __name__ == "__main__":
    test_dict = {
        "dimensions": {
            "length": "112",
            "width": "103",
            "height": "42"
        },
        "meta_data": [
            {
                "id": 11089769,
                "key": "imported_gallery_files",
                "value": [
                    "https://example.com/wp-content/uploads/2019/09/unnamed-3.jpg",
                    "https://example.com/wp-content/uploads/2019/09/unnamed-2.jpg",
                    "https://example.com/wp-content/uploads/2019/09/unnamed-4.jpg"
                ]
            }
        ]
    }
    dotted_dict = DotNotation(test_dict)
    print(dotted_dict.dimensions.length) # => '112'
    print(getattr(dotted_dict, 'dimensions.length')) # => '112'
    print(dotted_dict.meta_data[0].key) # => 'imported_gallery_files'
    print(getattr(dotted_dict, 'meta_data.0.key')) # => 'imported_gallery_files'
    print(dotted_dict.meta_data[0].value) # => ['link1','link2','link2']
    print(getattr(dotted_dict, 'meta_data.0.value')) # => ['link1','link2','link3']
    print(dotted_dict.meta_data[0].value[2]) # => 'link3'
    print(getattr(dotted_dict, 'meta_data.0.value.2')) # => 'link3'

Fabric有一个非常好的、最小的实现。将其扩展为允许嵌套访问,我们可以使用defaultdict,结果看起来像这样:

from collections import defaultdict

class AttributeDict(defaultdict):
    def __init__(self):
        super(AttributeDict, self).__init__(AttributeDict)

    def __getattr__(self, key):
        try:
            return self[key]
        except KeyError:
            raise AttributeError(key)

    def __setattr__(self, key, value):
        self[key] = value

可以这样使用它:

keys = AttributeDict()
keys.abc.xyz.x = 123
keys.abc.xyz.a.b.c = 234

这详细阐述了Kugel的回答“从dict和派生并实现__getattr__和__setattr__”。现在你知道怎么做了!