这里有一个尾递归函数

def recursive_function(n, sum):
    if n < 1:
        return sum
    else:
        return recursive_function(n-1, sum+n)

c = 998
print(recursive_function(c, 0))

它一直工作到n=997,然后它就中断并抛出一个RecursionError:在比较中超过了最大递归深度。这只是一个堆栈溢出吗?有办法绕过它吗?


当前回答

RecursionError:在比较中超出的最大递归深度

解决方案:

首先,最好知道当你在一个大输入(> 10^4)上用Python执行递归函数时,你可能会遇到“最大递归深度超出错误”。

Python中的sys模块有一个函数getrecursionlimit()可以显示Python版本中的递归限制。

import sys
print("Python Recursive Limitation = ", sys.getrecursionlimit())

在某些版本的Python中,默认值是1000,而在另一些版本中则是1500

你可以改变这个限制,但重要的是要知道,如果你增加太多,就会出现内存溢出错误。

所以在增加它之前要小心。你可以使用setrecursionlimit()在Python中增加这个限制。

import sys
sys.setrecursionlimit(3000)

请点击此链接了解导致此问题的更多信息:

https://elvand.com/quick-sort-binary-search/

其他回答

我知道这是一个老问题,但对于那些阅读的人来说,我建议不要使用递归来解决这样的问题——列表要快得多,并且完全避免递归。我将这样实现:

def fibonacci(n):
    f = [0,1,1]
    for i in xrange(3,n):
        f.append(f[i-1] + f[i-2])
    return 'The %.0fth fibonacci number is: %.0f' % (n,f[-1])

(在xrange中使用n+1,如果你从0开始计数你的斐波那契数列,而不是从1开始。)

许多人建议增加递归限制是一个很好的解决方案,但它不是,因为总是会有限制。相反,使用迭代解决方案。

def fib(n):
    a,b = 1,1
    for i in range(n-1):
        a,b = b,a+b
    return a
print fib(5)

我想给你一个使用内存计算斐波那契的例子,因为这将允许你使用递归计算更大的数字:

cache = {}
def fib_dp(n):
    if n in cache:
        return cache[n]
    if n == 0: return 0
    elif n == 1: return 1
    else:
        value = fib_dp(n-1) + fib_dp(n-2)
    cache[n] = value
    return value

print(fib_dp(998))

这仍然是递归的,但是使用了一个简单的哈希表,允许重用以前计算的斐波那契数,而不是重新计算。

编辑:6年后,我意识到我的“使用生成器”是轻率的,没有回答这个问题。我的歉意。

我想我的第一个问题是:你真的需要改变递归限制吗?如果不是,那么也许我的答案或其他不涉及改变递归限制的答案将适用。否则,如前所述,使用sys.getrecursionlimit(n)覆盖递归限制。

使用发电机?

def fib():
    a, b = 0, 1
    while True:
        yield a
        a, b = b, a + b

fibs = fib() #seems to be the only way to get the following line to work is to
             #assign the infinite generator to a variable

f = [fibs.next() for x in xrange(1001)]

for num in f:
        print num

以上fib()函数改编自Python生成器导论。

使用一种保证尾部调用优化的语言。或者使用迭代。或者,和装饰师一起玩。