这里有一个尾递归函数

def recursive_function(n, sum):
    if n < 1:
        return sum
    else:
        return recursive_function(n-1, sum+n)

c = 998
print(recursive_function(c, 0))

它一直工作到n=997,然后它就中断并抛出一个RecursionError:在比较中超过了最大递归深度。这只是一个堆栈溢出吗?有办法绕过它吗?


当前回答

当然,斐波那契数可以用O(n)计算,应用比奈公式:

from math import floor, sqrt

def fib(n):                                                     
    return int(floor(((1+sqrt(5))**n-(1-sqrt(5))**n)/(2**n*sqrt(5))+0.5))

正如评论者指出的那样,它不是O(1),而是O(n),因为2**n。另一个不同之处在于,您只能得到一个值,而使用递归则可以得到该值之前的所有Fibonacci(n)值。

其他回答

我知道这是一个老问题,但对于那些阅读的人来说,我建议不要使用递归来解决这样的问题——列表要快得多,并且完全避免递归。我将这样实现:

def fibonacci(n):
    f = [0,1,1]
    for i in xrange(3,n):
        f.append(f[i-1] + f[i-2])
    return 'The %.0fth fibonacci number is: %.0f' % (n,f[-1])

(在xrange中使用n+1,如果你从0开始计数你的斐波那契数列,而不是从1开始。)

如果你只想得到很少的斐波那契数,你可以使用矩阵法。

from numpy import matrix

def fib(n):
    return (matrix('0 1; 1 1', dtype='object') ** n).item(1)

它的速度很快,因为numpy使用了快速求幂算法。结果是O(log n)比比奈公式好因为它只使用整数。但如果你想让所有的斐波那契数都不超过n,最好是死记硬背。

看起来你只需要设置一个更高的递归深度:

import sys
sys.setrecursionlimit(1500)

这是为了避免堆栈溢出。Python解释器限制了递归的深度,以帮助您避免无限递归,从而导致堆栈溢出。 尝试增加递归限制(sys.setrecursionlimit)或重写不使用递归的代码。

来自Python文档:

sys.getrecursionlimit () 返回递归限制的当前值,即Python解释器堆栈的最大深度。这个限制可以防止无限递归导致C堆栈溢出和Python崩溃。可以通过setrecursionlimit()来设置。

我想给你一个使用内存计算斐波那契的例子,因为这将允许你使用递归计算更大的数字:

cache = {}
def fib_dp(n):
    if n in cache:
        return cache[n]
    if n == 0: return 0
    elif n == 1: return 1
    else:
        value = fib_dp(n-1) + fib_dp(n-2)
    cache[n] = value
    return value

print(fib_dp(998))

这仍然是递归的,但是使用了一个简单的哈希表,允许重用以前计算的斐波那契数,而不是重新计算。