这里有一个尾递归函数
def recursive_function(n, sum):
if n < 1:
return sum
else:
return recursive_function(n-1, sum+n)
c = 998
print(recursive_function(c, 0))
它一直工作到n=997,然后它就中断并抛出一个RecursionError:在比较中超过了最大递归深度。这只是一个堆栈溢出吗?有办法绕过它吗?
这里有一个尾递归函数
def recursive_function(n, sum):
if n < 1:
return sum
else:
return recursive_function(n-1, sum+n)
c = 998
print(recursive_function(c, 0))
它一直工作到n=997,然后它就中断并抛出一个RecursionError:在比较中超过了最大递归深度。这只是一个堆栈溢出吗?有办法绕过它吗?
当前回答
正如@alex所建议的,您可以使用生成器函数按顺序而不是递归地完成此操作。
这里是你问题中的等效代码:
def fib(n):
def fibseq(n):
""" Iteratively return the first n Fibonacci numbers, starting from 0. """
a, b = 0, 1
for _ in xrange(n):
yield a
a, b = b, a + b
return sum(v for v in fibseq(n))
print format(fib(100000), ',d') # -> no recursion depth error
其他回答
我想给你一个使用内存计算斐波那契的例子,因为这将允许你使用递归计算更大的数字:
cache = {}
def fib_dp(n):
if n in cache:
return cache[n]
if n == 0: return 0
elif n == 1: return 1
else:
value = fib_dp(n-1) + fib_dp(n-2)
cache[n] = value
return value
print(fib_dp(998))
这仍然是递归的,但是使用了一个简单的哈希表,允许重用以前计算的斐波那契数,而不是重新计算。
正如@alex所建议的,您可以使用生成器函数按顺序而不是递归地完成此操作。
这里是你问题中的等效代码:
def fib(n):
def fibseq(n):
""" Iteratively return the first n Fibonacci numbers, starting from 0. """
a, b = 0, 1
for _ in xrange(n):
yield a
a, b = b, a + b
return sum(v for v in fibseq(n))
print format(fib(100000), ',d') # -> no recursion depth error
看起来你只需要设置一个更高的递归深度:
import sys
sys.setrecursionlimit(1500)
RecursionError:在比较中超出的最大递归深度
解决方案:
首先,最好知道当你在一个大输入(> 10^4)上用Python执行递归函数时,你可能会遇到“最大递归深度超出错误”。
Python中的sys模块有一个函数getrecursionlimit()可以显示Python版本中的递归限制。
import sys
print("Python Recursive Limitation = ", sys.getrecursionlimit())
在某些版本的Python中,默认值是1000,而在另一些版本中则是1500
你可以改变这个限制,但重要的是要知道,如果你增加太多,就会出现内存溢出错误。
所以在增加它之前要小心。你可以使用setrecursionlimit()在Python中增加这个限制。
import sys
sys.setrecursionlimit(3000)
请点击此链接了解导致此问题的更多信息:
https://elvand.com/quick-sort-binary-search/
当然,斐波那契数可以用O(n)计算,应用比奈公式:
from math import floor, sqrt
def fib(n):
return int(floor(((1+sqrt(5))**n-(1-sqrt(5))**n)/(2**n*sqrt(5))+0.5))
正如评论者指出的那样,它不是O(1),而是O(n),因为2**n。另一个不同之处在于,您只能得到一个值,而使用递归则可以得到该值之前的所有Fibonacci(n)值。