我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法:

我使用内置的Math.sqrt()以简单的方式完成了这项工作函数,但我想知道是否有一种方法可以通过将自己限制为仅限整数的域。维护查找表是不切实际的(因为平方小于263的231.5个整数)。

下面是我现在做的非常简单明了的方法:

public final static boolean isPerfectSquare(long n)
{
  if (n < 0)
    return false;

  long tst = (long)(Math.sqrt(n) + 0.5);
  return tst*tst == n;
}

注意:我在许多Project Euler问题中都使用了这个函数。因此,其他人将永远不必维护此代码。而这种微优化实际上可能会有所不同,因为挑战的一部分是在不到一分钟的时间内完成每一个算法,而在某些问题中,这个函数需要调用数百万次。


我尝试了不同的解决方案:

经过详尽的测试,我发现不需要在Math.sqrt()的结果上加0.5,至少在我的机器上是这样。快速平方根逆运算速度更快,但对于n>=410881,它给出了错误的结果。然而,正如BobbyShaftoe所建议的,我们可以在n<410881时使用FISR黑客。牛顿的方法比Math.sqrt()慢得多。这可能是因为Math.sqr()使用了类似于牛顿方法的东西,但在硬件中实现,所以比Java快得多。此外,牛顿法仍然需要使用双精度。一个经过修改的牛顿方法使用了一些技巧,因此只涉及整数数学,需要一些技巧来避免溢出(我希望这个函数可以处理所有64位有符号的正整数),而且它仍然比math.sqrt()慢。二元斩更慢。这是有意义的,因为二进制斩波平均需要16次才能找到64位数字的平方根。根据John的测试,在C++中使用or语句比使用switch更快,但在Java和C#中,or和switch之间似乎没有区别。我还尝试创建一个查找表(作为64个布尔值的私有静态数组)。然后,我只说if(lookup[(int)(n&0x3F)]){test}else return false;,而不是switch或or语句;。令我惊讶的是,这(只是稍微)慢了一些。这是因为在Java中检查数组边界。


当前回答

标签中提到了项目Euler,其中的许多问题需要检查数字>>2^64。当您使用80字节缓冲区时,上面提到的大多数优化都不容易工作。

我使用了javaBigInteger和稍微修改过的Newton方法,它对整数更有效。问题是,精确的平方n^2收敛到(n-1)而不是n,因为n^2-1=(n-1)(n+1),最终误差仅比最终除数低一步,算法终止。在计算错误之前,通过在原始参数中添加一个参数很容易解决。(为立方体根等添加两个)

这个算法的一个优点是,你可以立即判断出这个数字是否是一个完美的平方-牛顿方法中的最终误差(不是校正)将为零。一个简单的修改也可以让您快速计算floor(sqrt(x)),而不是最接近的整数。这对于几个Euler问题很方便。

其他回答

为了表现,你经常不得不做一些宣传。其他人表达了不同的方法,然而,你注意到卡马克的黑客在达到N的某些值时更快。然后,你应该检查“N”,如果它小于N,请使用卡马克的方法,否则使用此处答案中描述的其他方法。

sqrt调用并不完全准确,正如前面所提到的,但它很有趣,也很有启发性,因为它不会在速度方面影响其他答案。毕竟,sqrt的汇编语言指令序列很小。英特尔有一个硬件指令,我相信Java不会使用它,因为它不符合IEEE。

那么为什么速度慢呢?因为Java实际上是通过JNI调用一个C例程,而且这样做实际上比调用一个Java子程序慢,而Java子程序本身比内联调用慢。这很烦人,Java本应该想出更好的解决方案,即在必要时构建浮点库调用。哦,好吧。

在C++中,我怀疑所有复杂的替代方案都会失去速度,但我还没有检查过它们。我所做的,也是Java人会发现有用的,是一个简单的黑客,是a.Rex建议的特例测试的扩展。使用单个长值作为位数组,不检查边界。这样,您就有了64位布尔查找。

typedef unsigned long long UVLONG
UVLONG pp1,pp2;

void init2() {
  for (int i = 0; i < 64; i++) {
    for (int j = 0; j < 64; j++)
      if (isPerfectSquare(i * 64 + j)) {
    pp1 |= (1 << j);
    pp2 |= (1 << i);
    break;
      }
   }
   cout << "pp1=" << pp1 << "," << pp2 << "\n";  
}


inline bool isPerfectSquare5(UVLONG x) {
  return pp1 & (1 << (x & 0x3F)) ? isPerfectSquare(x) : false;
}

在我的core2双人游戏机上,PerfectSquare5的程序运行时间约为1/3。我怀疑,沿着相同的路线进一步调整可能会进一步缩短平均时间,但每次检查时,你都在用更多的测试来换取更多的消除,所以你不能在这条路上走得太远。

当然,你可以用同样的方法检查高6位,而不是单独测试阴性。

请注意,我所做的只是消除可能的正方形,但当我有一个潜在的情况时,我必须调用原始的内联的isPerfectSquare。

init2例程被调用一次以初始化pp1和pp2的静态值。请注意,在我的C++实现中,我使用的是无符号long-long,因此,既然有符号,就必须使用>>>运算符。

没有内在的必要对数组进行边界检查,但Java的优化器必须很快地解决这一问题,所以我不怪他们。

这个问题让我很疑惑,所以我做了一些简单的编码,我在这里介绍它,因为我觉得它很有趣,很相关,但我不知道它有多有用。有一个简单的算法

a_n+1 = (a_n + x/a_n)/2

用于计算平方根,但它用于小数。我想知道,如果我只是用整数数学编码相同的算法,会发生什么。它甚至会汇聚到正确的答案上吗?我不知道,所以我写了一个程序。。。

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <math.h>

_Bool isperfectsquare(uint64_t x, uint64_t *isqrtx) {
  // NOTE: isqrtx approximate for non-squares. (benchmarked at 162ns 3GHz i5)
  uint32_t i;
  uint64_t ai;
  ai = 1 + ((x & 0xffff000000000000) >> 32) + ((x & 0xffff00000000) >> 24) + ((x & 0xffff0000) >> 16);
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = ai & 0xffffffff;
  if (isqrtx != NULL) isqrtx[0] = ai;
  return ai*ai == x;
}

void main() {

  uint64_t x, isqrtx;
  uint64_t i;
  for (i=1; i<0x100000000; i++) {
    if (!isperfectsquare(i*i, &isqrtx)) {
      printf("Failed at %li", i);
      exit(1);
    }
  }
  printf("All OK.\n");
} 

因此,事实证明,该公式的12次迭代足以为所有64位无符号长整数(完美平方)提供正确的结果,当然,非平方将返回false。

simon@simon-Inspiron-N5040:~$ time ./isqrt.bin 
All OK.

real    11m37.096s
user    11m35.053s
sys 0m0.272s

因此697s/2^32约为162纳秒。实际上,该函数对于所有输入都具有相同的运行时。讨论中其他地方详细介绍的一些措施可以通过检查最后四位等来加快非正方形的速度。希望有人像我一样觉得这很有趣。

当观察到正方形的最后n位时,我检查了所有可能的结果。通过连续检查更多位,可以消除多达5/6的输入。我实际上是为了实现费马的因子分解算法而设计的,而且速度非常快。

public static boolean isSquare(final long val) {
   if ((val & 2) == 2 || (val & 7) == 5) {
     return false;
   }
   if ((val & 11) == 8 || (val & 31) == 20) {
     return false;
   }

   if ((val & 47) == 32 || (val & 127) == 80) {
     return false;
   }

   if ((val & 191) == 128 || (val & 511) == 320) {
     return false;
   }

   // if((val & a == b) || (val & c == d){
   //   return false;
   // }

   if (!modSq[(int) (val % modSq.length)]) {
        return false;
   }

   final long root = (long) Math.sqrt(val);
   return root * root == val;
}

伪代码的最后一位可用于扩展测试以消除更多值。上述测试针对k=0、1、2、3

a的形式为(3<<2k)-1b的形式为(2<<2k)c的形式为(2<<2k+2)-1d的形式为(2<<2k-1)*10

它首先测试它是否具有幂模为2的平方残差,然后根据最终模量进行测试,然后使用Math.sqrt进行最终测试。我从最上面的帖子中提出了这个想法,并试图扩展它。我感谢任何评论或建议。

更新:使用模数(modSq)和44352的模数基数的测试,我的测试在OP更新中的96%的时间内运行,最多可达1000000000。

一个数字的平方根,假设该数字是一个完全平方。

复杂性为log(n)

/**
 * Calculate square root if the given number is a perfect square.
 * 
 * Approach: Sum of n odd numbers is equals to the square root of n*n, given 
 * that n is a perfect square.
 *
 * @param number
 * @return squareRoot
 */

public static int calculateSquareRoot(int number) {

    int sum=1;
    int count =1;
    int squareRoot=1;
    while(sum<number) {
        count+=2;
        sum+=count;
        squareRoot++;
    }
    return squareRoot;
}