我有一个具有大量特征的数据集,因此分析相关矩阵变得非常困难。我想绘制一个相关矩阵,我们使用dataframe.corr()函数从pandas库中获得。pandas库是否提供了任何内置函数来绘制这个矩阵?
当前回答
为了完整起见,截至2019年底,我所知道的seaborn最简单的解决方案,如果使用Jupyter:
import seaborn as sns
sns.heatmap(dataframe.corr())
其他回答
Statmodels图形也提供了一个很好的相关矩阵视图
import statsmodels.api as sm
import matplotlib.pyplot as plt
corr = dataframe.corr()
sm.graphics.plot_corr(corr, xnames=list(corr.columns))
plt.show()
为了完整起见,截至2019年底,我所知道的seaborn最简单的解决方案,如果使用Jupyter:
import seaborn as sns
sns.heatmap(dataframe.corr())
我更喜欢用Plotly,因为它的图表更具交互性,也更容易理解。可以使用下面的代码片段。
import plotly.express as px
def plotly_corr_plot(df,w,h):
fig = px.imshow(df.corr())
fig.update_layout(
autosize=False,
width=w,
height=h,)
fig.show()
corrmatrix = df.corr()
corrmatrix *= np.tri(*corrmatrix.values.shape, k=-1).T
corrmatrix = corrmatrix.stack().sort_values(ascending = False).reset_index()
corrmatrix.columns = ['Признак 1', 'Признак 2', 'Корреляция']
corrmatrix[(corrmatrix['Корреляция'] >= 0.7) + (corrmatrix['Корреляция'] <= -0.7)]
drop_columns = corrmatrix[(corrmatrix['Корреляция'] >= 0.82) + (corrmatrix['Корреляция'] <= -0.7)]['Признак 2']
df.drop(drop_columns, axis=1, inplace=True)
corrmatrix[(corrmatrix['Корреляция'] >= 0.7) + (corrmatrix['Корреляция'] <= -0.7)]
你可以使用来自seaborn的heatmap()来查看b/w不同特征的相关性:
import matplot.pyplot as plt
import seaborn as sns
co_matrics=dataframe.corr()
plot.figure(figsize=(15,20))
sns.heatmap(co_matrix, square=True, cbar_kws={"shrink": .5})
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录