我有一个字符串列表,我想执行一个自然的字母排序。

例如,下面的列表是自然排序(我想要的):

['elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'Elm12', 'elm13']

下面是上面列表的“排序”版本(我使用sorted()得到的):

['Elm11', 'Elm12', 'Elm2', 'elm0', 'elm1', 'elm10', 'elm13', 'elm9']

我在寻找一个排序函数它的行为和第一个一样。


当前回答

考虑到:

data = ['Elm11', 'Elm12', 'Elm2', 'elm0', 'elm1', 'elm10', 'elm13', 'elm9']

类似于SergO的解决方案,没有外部库的1-liner将是:

data.sort(key=lambda x: int(x[3:]))

or

sorted_data = sorted(data, key=lambda x: int(x[3:]))

解释:

该解决方案使用sort的关键特性来定义将用于排序的函数。因为我们知道每个数据条目前面都有'elm',排序函数将字符串中第三个字符之后的部分(即int(x[3:]))转换为整数。如果数据的数值部分在不同的位置,那么函数的这部分将不得不改变。

其他回答

试试这个:

import re

def natural_sort(l): 
    convert = lambda text: int(text) if text.isdigit() else text.lower()
    alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
    return sorted(l, key=alphanum_key)

输出:

['elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'Elm12', 'elm13']

代码改编自这里:排序人类:自然排序顺序。

让我就这一需求提出自己的看法:

from typing import Tuple, Union, Optional, Generator


StrOrInt = Union[str, int]


# On Python 3.6, string concatenation is REALLY fast
# Tested myself, and this fella also tested:
# https://blog.ganssle.io/articles/2019/11/string-concat.html
def griter(s: str) -> Generator[StrOrInt, None, None]:
    last_was_digit: Optional[bool] = None
    cluster: str = ""
    for c in s:
        if last_was_digit is None:
            last_was_digit = c.isdigit()
            cluster += c
            continue
        if c.isdigit() != last_was_digit:
            if last_was_digit:
                yield int(cluster)
            else:
                yield cluster
            last_was_digit = c.isdigit()
            cluster = ""
        cluster += c
    if last_was_digit:
        yield int(cluster)
    else:
        yield cluster
    return


def grouper(s: str) -> Tuple[StrOrInt, ...]:
    return tuple(griter(s))

现在如果我们有这样的列表:

filelist = [
    'File3', 'File007', 'File3a', 'File10', 'File11', 'File1', 'File4', 'File5',
    'File9', 'File8', 'File8b1', 'File8b2', 'File8b11', 'File6'
]

我们可以简单地使用key= kwarg来进行自然排序:

>>> sorted(filelist, key=grouper)
['File1', 'File3', 'File3a', 'File4', 'File5', 'File6', 'File007', 'File8', 
'File8b1', 'File8b2', 'File8b11', 'File9', 'File10', 'File11']

当然,这里的缺点是,就像现在一样,该函数将对大写字母在小写字母之前进行排序。

我将把不区分大小写的grouper的实现留给读者:-)

下面是马克·拜尔回答的一个更加python化的版本:

import re

def natural_sort_key(s, _nsre=re.compile('([0-9]+)')):
    return [int(text) if text.isdigit() else text.lower()
            for text in _nsre.split(s)]

现在这个函数可以在任何使用它的函数中用作键,比如list。Sort, sorted, max,等等。

作为lambda:

lambda s: [int(t) if t.isdigit() else t.lower() for t in re.split('(\d+)', s)]

完全可重复的演示代码:

import re
natsort = lambda s: [int(t) if t.isdigit() else t.lower() for t in re.split('(\d+)', s)]
L = ["a1", "a10", "a11", "a2", "a22", "a3"]   
print(sorted(L, key=natsort))  
# ['a1', 'a2', 'a3', 'a10', 'a11', 'a22'] 

在@Mark Byers的回答之后,这里有一个接受关键参数的适应,并且更符合pep8。

def natsorted(seq, key=None):
    def convert(text):
        return int(text) if text.isdigit() else text

    def alphanum(obj):
        if key is not None:
            return [convert(c) for c in re.split(r'([0-9]+)', key(obj))]
        return [convert(c) for c in re.split(r'([0-9]+)', obj)]

    return sorted(seq, key=alphanum)

我还做了一个Gist

本职位的价值

我的观点是提供一个可以普遍应用的非正则表达式解决方案。 我将创建三个函数:

find_first_digit,这是我从@AnuragUniyal借来的。它将查找字符串中第一个数字或非数字的位置。 Split_digits是一个生成器,它将字符串分成数字块和非数字块。当它是数字时,它也会产生整数。 Natural_key只是将split_digits包装成一个元组。这是我们用来排序,最大,最小的键。

功能

def find_first_digit(s, non=False):
    for i, x in enumerate(s):
        if x.isdigit() ^ non:
            return i
    return -1

def split_digits(s, case=False):
    non = True
    while s:
        i = find_first_digit(s, non)
        if i == 0:
            non = not non
        elif i == -1:
            yield int(s) if s.isdigit() else s if case else s.lower()
            s = ''
        else:
            x, s = s[:i], s[i:]
            yield int(x) if x.isdigit() else x if case else x.lower()

def natural_key(s, *args, **kwargs):
    return tuple(split_digits(s, *args, **kwargs))

我们可以看到它是一般的,因为我们可以有多个数字块:

# Note that the key has lower case letters
natural_key('asl;dkfDFKJ:sdlkfjdf809lkasdjfa_543_hh')

('asl;dkfdfkj:sdlkfjdf', 809, 'lkasdjfa_', 543, '_hh')

或保留大小写敏感:

natural_key('asl;dkfDFKJ:sdlkfjdf809lkasdjfa_543_hh', True)

('asl;dkfDFKJ:sdlkfjdf', 809, 'lkasdjfa_', 543, '_hh')

我们可以看到它以适当的顺序对OP的列表进行排序

sorted(
    ['elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'Elm12', 'elm13'],
    key=natural_key
)

['elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'Elm12', 'elm13']

但它也可以处理更复杂的列表:

sorted(
    ['f_1', 'e_1', 'a_2', 'g_0', 'd_0_12:2', 'd_0_1_:2'],
    key=natural_key
)

['a_2', 'd_0_1_:2', 'd_0_12:2', 'e_1', 'f_1', 'g_0']

我的正则表达式等价于

def int_maybe(x):
    return int(x) if str(x).isdigit() else x

def split_digits_re(s, case=False):
    parts = re.findall('\d+|\D+', s)
    if not case:
        return map(int_maybe, (x.lower() for x in parts))
    else:
        return map(int_maybe, parts)
    
def natural_key_re(s, *args, **kwargs):
    return tuple(split_digits_re(s, *args, **kwargs))