我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。


当前回答

令人惊讶的是之前没有人提出这个问题,但是对于需要数据库的实用主义者来说:MongoDB对Geo查询提供了出色的支持,包括这个查询。

你需要的是:

db.neighborhoods。findOne({geometry: {$geoIntersects: {$geometry: { type: "Point",坐标:["经度","纬度"]}}} })

communities是存储一个或多个标准GeoJson格式多边形的集合。如果查询返回null,则表示不相交,否则为。

这里有详细的记录: https://docs.mongodb.com/manual/tutorial/geospatial-tutorial/

在330个不规则多边形网格中,超过6000个点分类的性能不到一分钟,没有任何优化,包括用各自的多边形更新文档的时间。

其他回答

答案取决于你用的是简单多边形还是复杂多边形。简单多边形不能有任何线段交点。所以它们可以有洞,但线不能交叉。复杂区域可以有直线交点,所以它们可以有重叠的区域,或者只有一点相交的区域。

对于简单多边形,最好的算法是光线投射(交叉数)算法。对于复杂多边形,该算法不检测重叠区域内的点。所以对于复杂多边形你必须使用圈数算法。

下面是一篇用C实现这两种算法的优秀文章。我试过了,效果不错。

http://geomalgorithms.com/a03-_inclusion.html

令人惊讶的是之前没有人提出这个问题,但是对于需要数据库的实用主义者来说:MongoDB对Geo查询提供了出色的支持,包括这个查询。

你需要的是:

db.neighborhoods。findOne({geometry: {$geoIntersects: {$geometry: { type: "Point",坐标:["经度","纬度"]}}} })

communities是存储一个或多个标准GeoJson格式多边形的集合。如果查询返回null,则表示不相交,否则为。

这里有详细的记录: https://docs.mongodb.com/manual/tutorial/geospatial-tutorial/

在330个不规则多边形网格中,超过6000个点分类的性能不到一分钟,没有任何优化,包括用各自的多边形更新文档的时间。

我已经做了nirg的c++代码的Python实现:

输入

Bounding_points:组成多边形的节点。 Bounding_box_positions:筛选的候选点。(在我从边界框创建的实现中。 (输入为元组列表,格式为:[(xcord, ycord),…])

返回

多边形内的所有点。

def polygon_ray_casting(self, bounding_points, bounding_box_positions):
    # Arrays containing the x- and y-coordinates of the polygon's vertices.
    vertx = [point[0] for point in bounding_points]
    verty = [point[1] for point in bounding_points]
    # Number of vertices in the polygon
    nvert = len(bounding_points)
    # Points that are inside
    points_inside = []

    # For every candidate position within the bounding box
    for idx, pos in enumerate(bounding_box_positions):
        testx, testy = (pos[0], pos[1])
        c = 0
        for i in range(0, nvert):
            j = i - 1 if i != 0 else nvert - 1
            if( ((verty[i] > testy ) != (verty[j] > testy))   and
                    (testx < (vertx[j] - vertx[i]) * (testy - verty[i]) / (verty[j] - verty[i]) + vertx[i]) ):
                c += 1
        # If odd, that means that we are inside the polygon
        if c % 2 == 1: 
            points_inside.append(pos)


    return points_inside

同样,这个想法也是从这里得来的

这似乎在R中工作(为丑陋道歉,希望看到更好的版本!)。

pnpoly <- function(nvert,vertx,verty,testx,testy){
          c <- FALSE
          j <- nvert 
          for (i in 1:nvert){
              if( ((verty[i]>testy) != (verty[j]>testy)) && 
   (testx < (vertx[j]-vertx[i])*(testy-verty[i])/(verty[j]-verty[i])+vertx[i]))
            {c <- !c}
             j <- i}
   return(c)}

在大多数情况下,这是一个比其他算法都快的算法。

它又新又雅致。我们花费O(n * log(n))时间构建一个表,允许我们在O(log(n) + k)时间内测试多边形中的点。

与光线跟踪或角度不同,使用扫描光束表可以更快地对同一多边形进行多次检查。我们必须预先构建一个扫描束活动边表,这是大多数代码正在做的事情。

We calculate the scanbeam and the active edges for that position in the y-direction. We make a list of points sorted by their y-component and we iterate through this list, for two events. Start-Y and End-Y, we track the active edges as we process the list. We process the events in order and for each scanbeam we record the y-value of the event and the active edges at each event (events being start-y and end-y) but we only record these when our event-y is different than last time (so everything at the event point is processed before we mark it in our table).

我们得到我们的表格:

[] p6p5、p6p7 p6p5, p6p7, p2p3, p2p1 p6p7, p5p4, p2p3, p3p1 p7p8, p5p4, p2p3, p2p1 p7p8, p5p4, p3p4, p2p1 p7p8 p2p1、 p7p8、p1p0 p8p0、p1p0 []

在构建该表之后,实际执行工作的代码只有几行。

注意:这里的代码使用复数值作为点。所以。real是。x。imag是。y。

def point_in_scantable(actives_table, events, xi, point):
    beam = bisect(events, point.imag) - 1  # Binary search in sorted array.
    actives_at_y = actives_table[beam]
    total = sum([point.real > xi(e, point.imag) for e in actives_at_y])
    return bool(total % 2)

我们对事件进行二进制搜索,以找到特定值的actives_at_y。对于在y点的所有活动,我们计算在我们点的特定y点的x段值。每次x截距大于点的x分量时加1。然后对总数乘以2。(这是偶数-奇数填充规则,你可以很容易地适应任何其他填充规则)。

完整的代码:


from bisect import bisect

def build_edge_list(polygon):
    edge_list = []
    for i in range(1, len(polygon)):
        if (polygon[i].imag, polygon[i].real) < (polygon[i - 1].imag, polygon[i - 1].real):
            edge_list.append((polygon[i], i))
            edge_list.append((polygon[i - 1], ~i))
        else:
            edge_list.append((polygon[i], ~i))
            edge_list.append((polygon[i - 1], i))

    def sort_key(e):
        return e[0].imag, e[0].real, ~e[1]

    edge_list.sort(key=sort_key)
    return edge_list


def build_scanbeam(edge_list):
    actives_table = []
    events = []
    y = -float("inf")
    actives = []
    for pt, index in edge_list:
        if y != pt.imag:
            actives_table.append(list(actives))
            events.append(y)
        if index >= 0:
            actives.append(index)
        else:
            actives.remove(~index)
        y = pt.imag
    return actives_table, events

def point_in_polygon(polygon, point):
    def x_intercept(e, y):
        pt0 = polygon[e-1]
        pt1 = polygon[e]
        if pt1.real - pt0.real == 0:
            return pt0.real
        m = (pt1.imag - pt0.imag) / (pt1.real - pt0.real)
        b = pt0.imag - (m * pt0.real)
        return (y - b) / m

    edge_list = build_edge_list(polygon)
    actives_table, events = build_scanbeam(edge_list)
    try:
        if len(point):
            return [point_in_scantable(actives_table, events, x_intercept, p) for p in point]
    except TypeError:
        return point_in_scantable(actives_table, events, x_intercept, point)

def point_in_scantable(actives_table, events, xi, point):
    beam = bisect(events, point.imag) - 1  # Binary search in sorted array.
    actives_at_y = actives_table[beam]
    total = sum([point.real > xi(e, point.imag) for e in actives_at_y])
    return bool(total % 2)

如果忽略,则扫描表的构建时间为O(n*log(n))。我们实际上是在O(log(n) + k)时间内查到的。其中n是多边形中段数的大小,k是该多边形中典型的活动边数。其他的光线追踪方法实际上需要O(n)时间。每次我们检查一个点,它迭代整个多边形。所以即使有这个明显的次优实现,它也轻而易举地打败了其他所有的。


There's a few performance tricks that could be done, for example, we can lower the time complexity to O(log(n) + log(k)) time. To do this we would implement Bentley-Ottmann into the sweep line, and rather than processing the intersections as different events, we split the lines at the intersections. We then also sort the active edges by their x-intercepts. We then know that no intersections occur during a scanbeam and since we sorted our segments (taking care to order them correctly within the scanbeam even if they start at the same initial point (you need to look at the slopes, or just compare midpoints of the segments). We then have a sorted intersection-less actives lists scanbeam table which means we can binary search into active edge list as well. Though that sounds like a lot of work for a value of k which is going to be typically 2 or maybe 4.

此外,由于这基本上变成了一个查找表和一些x截距的最小计算,它更能用GPU完成。你不再需要在多边形上循环了。所以你可以用numpy这样的东西来大量计算这些点,这样你就可以一次做所有的计算,从而提高性能。