我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。
当前回答
在C语言的多边形测试中,有一个点没有使用光线投射。它可以用于重叠区域(自我交叉),请参阅use_holes参数。
/* math lib (defined below) */
static float dot_v2v2(const float a[2], const float b[2]);
static float angle_signed_v2v2(const float v1[2], const float v2[2]);
static void copy_v2_v2(float r[2], const float a[2]);
/* intersection function */
bool isect_point_poly_v2(const float pt[2], const float verts[][2], const unsigned int nr,
const bool use_holes)
{
/* we do the angle rule, define that all added angles should be about zero or (2 * PI) */
float angletot = 0.0;
float fp1[2], fp2[2];
unsigned int i;
const float *p1, *p2;
p1 = verts[nr - 1];
/* first vector */
fp1[0] = p1[0] - pt[0];
fp1[1] = p1[1] - pt[1];
for (i = 0; i < nr; i++) {
p2 = verts[i];
/* second vector */
fp2[0] = p2[0] - pt[0];
fp2[1] = p2[1] - pt[1];
/* dot and angle and cross */
angletot += angle_signed_v2v2(fp1, fp2);
/* circulate */
copy_v2_v2(fp1, fp2);
p1 = p2;
}
angletot = fabsf(angletot);
if (use_holes) {
const float nested = floorf((angletot / (float)(M_PI * 2.0)) + 0.00001f);
angletot -= nested * (float)(M_PI * 2.0);
return (angletot > 4.0f) != ((int)nested % 2);
}
else {
return (angletot > 4.0f);
}
}
/* math lib */
static float dot_v2v2(const float a[2], const float b[2])
{
return a[0] * b[0] + a[1] * b[1];
}
static float angle_signed_v2v2(const float v1[2], const float v2[2])
{
const float perp_dot = (v1[1] * v2[0]) - (v1[0] * v2[1]);
return atan2f(perp_dot, dot_v2v2(v1, v2));
}
static void copy_v2_v2(float r[2], const float a[2])
{
r[0] = a[0];
r[1] = a[1];
}
注意:这是一个不太理想的方法,因为它包含很多对atan2f的调用,但它可能会引起阅读这个线程的开发人员的兴趣(在我的测试中,它比使用线交方法慢23倍)。
其他回答
Java版本:
public class Geocode {
private float latitude;
private float longitude;
public Geocode() {
}
public Geocode(float latitude, float longitude) {
this.latitude = latitude;
this.longitude = longitude;
}
public float getLatitude() {
return latitude;
}
public void setLatitude(float latitude) {
this.latitude = latitude;
}
public float getLongitude() {
return longitude;
}
public void setLongitude(float longitude) {
this.longitude = longitude;
}
}
public class GeoPolygon {
private ArrayList<Geocode> points;
public GeoPolygon() {
this.points = new ArrayList<Geocode>();
}
public GeoPolygon(ArrayList<Geocode> points) {
this.points = points;
}
public GeoPolygon add(Geocode geo) {
points.add(geo);
return this;
}
public boolean inside(Geocode geo) {
int i, j;
boolean c = false;
for (i = 0, j = points.size() - 1; i < points.size(); j = i++) {
if (((points.get(i).getLongitude() > geo.getLongitude()) != (points.get(j).getLongitude() > geo.getLongitude())) &&
(geo.getLatitude() < (points.get(j).getLatitude() - points.get(i).getLatitude()) * (geo.getLongitude() - points.get(i).getLongitude()) / (points.get(j).getLongitude() - points.get(i).getLongitude()) + points.get(i).getLatitude()))
c = !c;
}
return c;
}
}
nirg的c#版本的答案在这里:我只分享代码。这可能会节省一些时间。
public static bool IsPointInPolygon(IList<Point> polygon, Point testPoint) {
bool result = false;
int j = polygon.Count() - 1;
for (int i = 0; i < polygon.Count(); i++) {
if (polygon[i].Y < testPoint.Y && polygon[j].Y >= testPoint.Y || polygon[j].Y < testPoint.Y && polygon[i].Y >= testPoint.Y) {
if (polygon[i].X + (testPoint.Y - polygon[i].Y) / (polygon[j].Y - polygon[i].Y) * (polygon[j].X - polygon[i].X) < testPoint.X) {
result = !result;
}
}
j = i;
}
return result;
}
在C语言的多边形测试中,有一个点没有使用光线投射。它可以用于重叠区域(自我交叉),请参阅use_holes参数。
/* math lib (defined below) */
static float dot_v2v2(const float a[2], const float b[2]);
static float angle_signed_v2v2(const float v1[2], const float v2[2]);
static void copy_v2_v2(float r[2], const float a[2]);
/* intersection function */
bool isect_point_poly_v2(const float pt[2], const float verts[][2], const unsigned int nr,
const bool use_holes)
{
/* we do the angle rule, define that all added angles should be about zero or (2 * PI) */
float angletot = 0.0;
float fp1[2], fp2[2];
unsigned int i;
const float *p1, *p2;
p1 = verts[nr - 1];
/* first vector */
fp1[0] = p1[0] - pt[0];
fp1[1] = p1[1] - pt[1];
for (i = 0; i < nr; i++) {
p2 = verts[i];
/* second vector */
fp2[0] = p2[0] - pt[0];
fp2[1] = p2[1] - pt[1];
/* dot and angle and cross */
angletot += angle_signed_v2v2(fp1, fp2);
/* circulate */
copy_v2_v2(fp1, fp2);
p1 = p2;
}
angletot = fabsf(angletot);
if (use_holes) {
const float nested = floorf((angletot / (float)(M_PI * 2.0)) + 0.00001f);
angletot -= nested * (float)(M_PI * 2.0);
return (angletot > 4.0f) != ((int)nested % 2);
}
else {
return (angletot > 4.0f);
}
}
/* math lib */
static float dot_v2v2(const float a[2], const float b[2])
{
return a[0] * b[0] + a[1] * b[1];
}
static float angle_signed_v2v2(const float v1[2], const float v2[2])
{
const float perp_dot = (v1[1] * v2[0]) - (v1[0] * v2[1]);
return atan2f(perp_dot, dot_v2v2(v1, v2));
}
static void copy_v2_v2(float r[2], const float a[2])
{
r[0] = a[0];
r[1] = a[1];
}
注意:这是一个不太理想的方法,因为它包含很多对atan2f的调用,但它可能会引起阅读这个线程的开发人员的兴趣(在我的测试中,它比使用线交方法慢23倍)。
我认为这是迄今为止所有答案中最简洁的一个。
例如,假设我们有一个多边形,它带有多边形凹,看起来像这样:
大多边形顶点的二维坐标为
[[139, 483], [227, 792], [482, 849], [523, 670], [352, 330]]
方框顶点的坐标为
[[248, 518], [336, 510], [341, 614], [250, 620]]
空心三角形顶点的坐标为
[[416, 531], [505, 517], [495, 616]]
假设我们想要测试两个点[296,557]和[422,730],如果它们在红色区域内(不包括边缘)。如果我们定位这两个点,它将是这样的:
显然,[296,557]不在读取区域内,而[422,730]在。
我的解决方案是基于圈数算法。下面是我只使用numpy的4行python代码:
def detect(points, *polygons):
import numpy as np
endpoint1 = np.r_[tuple(np.roll(p, 1, 0) for p in polygons)][:, None] - points
endpoint2 = np.r_[polygons][:, None] - points
p1, p2 = np.cross(endpoint1, endpoint2), np.einsum('...i,...i', endpoint1, endpoint2)
return ~((p1.sum(0) < 0) ^ (abs(np.arctan2(p1, p2).sum(0)) > np.pi) | ((p1 == 0) & (p2 <= 0)).any(0))
要测试实现:
points = [[296, 557], [422, 730]]
polygon1 = [[139, 483], [227, 792], [482, 849], [523, 670], [352, 330]]
polygon2 = [[248, 518], [336, 510], [341, 614], [250, 620]]
polygon3 = [[416, 531], [505, 517], [495, 616]]
print(detect(points, polygon1, polygon2, polygon3))
输出:
[False True]
简单的解决方案是将多边形划分为三角形,并按这里解释的那样对三角形进行测试
如果你的多边形是凸多边形,可能有更好的方法。把这个多边形看作是无限条线的集合。每一行将空间一分为二。对于每一个点,很容易判断它是在直线的一边还是另一边。如果一个点在所有直线的同一侧,那么它在多边形内。
推荐文章
- 如何加速gwt编译器?
- MySQL OR与IN性能
- 应该……接住环内还是环外?
- 哪个更快/最好?SELECT *或SELECT columnn1, colum2, column3等
- 加快R中的循环操作
- INT和VARCHAR主键之间有真正的性能差异吗?
- c++标准是否要求iostreams的性能很差,或者我只是在处理一个糟糕的实现?
- 大概的成本访问各种缓存和主存储器?
- 模拟慢速互联网连接
- 如何检查表上持有哪些锁
- 检查字符串是否包含字符串列表中的元素
- Scala vs Python的Spark性能
- 现代c++能让你免费获得性能吗?
- 对于PostgreSQL表来说,多大才算太大?
- 即使从未抛出异常,使用try-catch块的代价是否昂贵?