我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。
当前回答
bobobobo引用的Eric Haines的文章真的很棒。特别有趣的是比较算法性能的表格;角度求和法和其他方法比起来真的很差。同样有趣的是,使用查找网格将多边形进一步细分为“in”和“out”扇区的优化可以使测试非常快,即使是在> 1000条边的多边形上。
不管怎样,现在还为时过早,但我的投票倾向于“交叉”方法,我认为这几乎就是Mecki所描述的。然而,我发现大卫·伯克(David Bourke)对它进行了最简洁的描述和编纂。我喜欢它不需要真正的三角函数,它适用于凸和凹,而且随着边数的增加,它的表现也相当不错。
顺便说一下,这是Eric Haines文章中的一个性能表,在随机多边形上进行测试。
number of edges per polygon
3 4 10 100 1000
MacMartin 2.9 3.2 5.9 50.6 485
Crossings 3.1 3.4 6.8 60.0 624
Triangle Fan+edge sort 1.1 1.8 6.5 77.6 787
Triangle Fan 1.2 2.1 7.3 85.4 865
Barycentric 2.1 3.8 13.8 160.7 1665
Angle Summation 56.2 70.4 153.6 1403.8 14693
Grid (100x100) 1.5 1.5 1.6 2.1 9.8
Grid (20x20) 1.7 1.7 1.9 5.7 42.2
Bins (100) 1.8 1.9 2.7 15.1 117
Bins (20) 2.1 2.2 3.7 26.3 278
其他回答
VBA版本:
注意:请记住,如果你的多边形是地图中的一个区域,纬度/经度是Y/X值,而不是X/Y(纬度= Y,经度= X),因为从我的理解来看,这是历史含义,因为经度不是一个测量值。
类模块:CPoint
Private pXValue As Double
Private pYValue As Double
'''''X Value Property'''''
Public Property Get X() As Double
X = pXValue
End Property
Public Property Let X(Value As Double)
pXValue = Value
End Property
'''''Y Value Property'''''
Public Property Get Y() As Double
Y = pYValue
End Property
Public Property Let Y(Value As Double)
pYValue = Value
End Property
模块:
Public Function isPointInPolygon(p As CPoint, polygon() As CPoint) As Boolean
Dim i As Integer
Dim j As Integer
Dim q As Object
Dim minX As Double
Dim maxX As Double
Dim minY As Double
Dim maxY As Double
minX = polygon(0).X
maxX = polygon(0).X
minY = polygon(0).Y
maxY = polygon(0).Y
For i = 1 To UBound(polygon)
Set q = polygon(i)
minX = vbMin(q.X, minX)
maxX = vbMax(q.X, maxX)
minY = vbMin(q.Y, minY)
maxY = vbMax(q.Y, maxY)
Next i
If p.X < minX Or p.X > maxX Or p.Y < minY Or p.Y > maxY Then
isPointInPolygon = False
Exit Function
End If
' SOURCE: http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
isPointInPolygon = False
i = 0
j = UBound(polygon)
Do While i < UBound(polygon) + 1
If (polygon(i).Y > p.Y) Then
If (polygon(j).Y < p.Y) Then
If p.X < (polygon(j).X - polygon(i).X) * (p.Y - polygon(i).Y) / (polygon(j).Y - polygon(i).Y) + polygon(i).X Then
isPointInPolygon = True
Exit Function
End If
End If
ElseIf (polygon(i).Y < p.Y) Then
If (polygon(j).Y > p.Y) Then
If p.X < (polygon(j).X - polygon(i).X) * (p.Y - polygon(i).Y) / (polygon(j).Y - polygon(i).Y) + polygon(i).X Then
isPointInPolygon = True
Exit Function
End If
End If
End If
j = i
i = i + 1
Loop
End Function
Function vbMax(n1, n2) As Double
vbMax = IIf(n1 > n2, n1, n2)
End Function
Function vbMin(n1, n2) As Double
vbMin = IIf(n1 > n2, n2, n1)
End Function
Sub TestPointInPolygon()
Dim i As Integer
Dim InPolygon As Boolean
' MARKER Object
Dim p As CPoint
Set p = New CPoint
p.X = <ENTER X VALUE HERE>
p.Y = <ENTER Y VALUE HERE>
' POLYGON OBJECT
Dim polygon() As CPoint
ReDim polygon(<ENTER VALUE HERE>) 'Amount of vertices in polygon - 1
For i = 0 To <ENTER VALUE HERE> 'Same value as above
Set polygon(i) = New CPoint
polygon(i).X = <ASSIGN X VALUE HERE> 'Source a list of values that can be looped through
polgyon(i).Y = <ASSIGN Y VALUE HERE> 'Source a list of values that can be looped through
Next i
InPolygon = isPointInPolygon(p, polygon)
MsgBox InPolygon
End Sub
令人惊讶的是之前没有人提出这个问题,但是对于需要数据库的实用主义者来说:MongoDB对Geo查询提供了出色的支持,包括这个查询。
你需要的是:
db.neighborhoods。findOne({geometry: {$geoIntersects: {$geometry: { type: "Point",坐标:["经度","纬度"]}}} })
communities是存储一个或多个标准GeoJson格式多边形的集合。如果查询返回null,则表示不相交,否则为。
这里有详细的记录: https://docs.mongodb.com/manual/tutorial/geospatial-tutorial/
在330个不规则多边形网格中,超过6000个点分类的性能不到一分钟,没有任何优化,包括用各自的多边形更新文档的时间。
David Segond's answer is pretty much the standard general answer, and Richard T's is the most common optimization, though therre are some others. Other strong optimizations are based on less general solutions. For example if you are going to check the same polygon with lots of points, triangulating the polygon can speed things up hugely as there are a number of very fast TIN searching algorithms. Another is if the polygon and points are on a limited plane at low resolution, say a screen display, you can paint the polygon onto a memory mapped display buffer in a given colour, and check the color of a given pixel to see if it lies in the polygons.
像许多优化一样,这些优化是基于特定情况而不是一般情况,并且基于摊销时间而不是单次使用产生效益。
在这个领域工作,我发现约瑟夫·奥鲁克斯的《计算几何》在C' ISBN 0-521-44034-3是一个很大的帮助。
我认为下面这段代码是最好的解决方案(从这里开始):
int pnpoly(int nvert, float *vertx, float *verty, float testx, float testy)
{
int i, j, c = 0;
for (i = 0, j = nvert-1; i < nvert; j = i++) {
if ( ((verty[i]>testy) != (verty[j]>testy)) &&
(testx < (vertx[j]-vertx[i]) * (testy-verty[i]) / (verty[j]-verty[i]) + vertx[i]) )
c = !c;
}
return c;
}
参数
nvert:多边形中的顶点数。是否在末端重复第一个顶点在上面的文章中已经讨论过了。 vertx, verty:包含多边形顶点的x坐标和y坐标的数组。 testx, testy:测试点的X坐标和y坐标。
它既简短又高效,适用于凸多边形和凹多边形。如前所述,您应该首先检查边界矩形,并单独处理多边形孔。
这背后的想法很简单。作者描述如下:
我从测试点水平运行一条半无限射线(增加x,固定y),并计算它穿过多少条边。在每个十字路口,光线在内部和外部之间切换。这叫做乔丹曲线定理。
当水平射线穿过任意一条边时,变量c从0变为1,从1变为0。基本上它记录了交叉边的数量是偶数还是奇数。0表示偶数,1表示奇数。
当使用qt (qt 4.3+)时,可以使用QPolygon的函数containsPoint
推荐文章
- 如何加速gwt编译器?
- MySQL OR与IN性能
- 应该……接住环内还是环外?
- 哪个更快/最好?SELECT *或SELECT columnn1, colum2, column3等
- 加快R中的循环操作
- INT和VARCHAR主键之间有真正的性能差异吗?
- c++标准是否要求iostreams的性能很差,或者我只是在处理一个糟糕的实现?
- 大概的成本访问各种缓存和主存储器?
- 模拟慢速互联网连接
- 如何检查表上持有哪些锁
- 检查字符串是否包含字符串列表中的元素
- Scala vs Python的Spark性能
- 现代c++能让你免费获得性能吗?
- 对于PostgreSQL表来说,多大才算太大?
- 即使从未抛出异常,使用try-catch块的代价是否昂贵?