float(nan')表示nan(不是数字)。但我该如何检查呢?


当前回答

numpy.isnan(数字)告诉你它是不是NaN。

其他回答

测试NaN的通常方法是查看它是否等于自身:

def isNaN(num):
    return num != num

事实上我刚碰到这个,但对我来说,它是在检查nan、-inf或inf

if float('-inf') < float(num) < float('inf'):

这对于数字是正确的,对于nan和inf都是错误的,对于字符串或其他类型(这可能是一件好事)会引发异常。此外,这不需要导入任何库,如math或numpy(numpy非常大,它的大小是任何编译应用程序的两倍)。

下面是一个答案:

符合IEEE 754标准的NaN实现例如:python的NaN:float(NaN'),numpy.NaN。。。任何其他对象:string或其他任何对象(遇到异常时不会引发异常)

按照标准实现的NaN是唯一一个与自身的不平等比较应返回True的值:

def is_nan(x):
    return (x != x)

还有一些例子:

import numpy as np
values = [float('nan'), np.nan, 55, "string", lambda x : x]
for value in values:
    print(f"{repr(value):<8} : {is_nan(value)}")

输出:

nan      : True
nan      : True
55       : False
'string' : False
<function <lambda> at 0x000000000927BF28> : False

用于浮球类型

>>> import pandas as pd
>>> value = float(nan)
>>> type(value)
>>> <class 'float'>
>>> pd.isnull(value)
True
>>>
>>> value = 'nan'
>>> type(value)
>>> <class 'str'>
>>> pd.isnull(value)
False

如何从混合数据类型列表中删除NaN(float)项

如果在可迭代的中有混合类型,这里有一个不使用numpy的解决方案:

from math import isnan

Z = ['a','b', float('NaN'), 'd', float('1.1024')]

[x for x in Z if not (
                      type(x) == float # let's drop all float values…
                      and isnan(x) # … but only if they are nan
                      )]
['a', 'b', 'd', 1.1024]

短路求值意味着不会对非“float”类型的值调用isnan,因为False和(…)很快求值为False,而无需对右侧求值。