float(nan')表示nan(不是数字)。但我该如何检查呢?
当前回答
我进入这篇文章,因为我在功能方面遇到了一些问题:
math.isnan()
运行此代码时出现问题:
a = "hello"
math.isnan(a)
它引发了异常。我的解决方案是再做一次检查:
def is_nan(x):
return isinstance(x, float) and math.isnan(x)
其他回答
numpy.isnan(数字)告诉你它是不是NaN。
另一种方法是,如果你坚持低于2.6,你没有numpy,也没有IEEE 754支持:
def isNaN(x):
return str(x) == str(1e400*0)
math.isnan()
或将数字与自身进行比较。NaN总是!=NaN,否则(例如,如果是数字),比较应成功。
对于panda中的字符串,请使用pd.isnull:
if not pd.isnull(atext):
for word in nltk.word_tokenize(atext):
NLTK的特征提取功能
def act_features(atext):
features = {}
if not pd.isnull(atext):
for word in nltk.word_tokenize(atext):
if word not in default_stopwords:
features['cont({})'.format(word.lower())]=True
return features
似乎检查它是否等于自身(x!=x)是最快的。
import pandas as pd
import numpy as np
import math
x = float('nan')
%timeit x != x
44.8 ns ± 0.152 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
%timeit math.isnan(x)
94.2 ns ± 0.955 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
%timeit pd.isna(x)
281 ns ± 5.48 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
%timeit np.isnan(x)
1.38 µs ± 15.7 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
推荐文章
- 如何计算线段的法向量?
- 在Python中获取大文件的MD5哈希值
- 在Python格式字符串中%s是什么意思?
- 如何循环通过所有但最后一项的列表?
- python用什么方法避免默认参数为空列表?
- ValueError: numpy。Ndarray大小改变,可能表示二进制不兼容。期望从C头得到88,从PyObject得到80
- Anaconda /conda -安装特定的软件包版本
- 我在哪里调用Keras的BatchNormalization函数?
- 打印测试执行时间并使用py.test锁定缓慢的测试
- 插入一行到熊猫数据框架
- 要列出Pandas DataFrame列
- 在Django模型中存储电话号码的最佳方法是什么?
- 从导入的模块中模拟函数
- 滚动或滑动窗口迭代器?
- python的方法找到最大值和它的索引在一个列表?