float(nan')表示nan(不是数字)。但我该如何检查呢?
当前回答
用于浮球类型
>>> import pandas as pd
>>> value = float(nan)
>>> type(value)
>>> <class 'float'>
>>> pd.isnull(value)
True
>>>
>>> value = 'nan'
>>> type(value)
>>> <class 'str'>
>>> pd.isnull(value)
False
其他回答
这里有三种方法可以测试变量是否为“NaN”。
import pandas as pd
import numpy as np
import math
# For single variable all three libraries return single boolean
x1 = float("nan")
print(f"It's pd.isna: {pd.isna(x1)}")
print(f"It's np.isnan: {np.isnan(x1)}}")
print(f"It's math.isnan: {math.isnan(x1)}}")
输出
It's pd.isna: True
It's np.isnan: True
It's math.isnan: True
事实上我刚碰到这个,但对我来说,它是在检查nan、-inf或inf
if float('-inf') < float(num) < float('inf'):
这对于数字是正确的,对于nan和inf都是错误的,对于字符串或其他类型(这可能是一件好事)会引发异常。此外,这不需要导入任何库,如math或numpy(numpy非常大,它的大小是任何编译应用程序的两倍)。
我正在从一个web服务接收数据,该服务将NaN作为字符串“NaN”发送。但我的数据中也可能有其他类型的字符串,所以简单的float(value)可能会引发异常。我使用了接受答案的以下变体:
def isnan(value):
try:
import math
return math.isnan(float(value))
except:
return False
要求:
isnan('hello') == False
isnan('NaN') == True
isnan(100) == False
isnan(float('nan')) = True
比较pd.isna、math.isnan和np.isnan及其处理不同类型对象的灵活性。
下表显示了是否可以使用给定方法检查对象类型:
+------------+-----+---------+------+--------+------+
| Method | NaN | numeric | None | string | list |
+------------+-----+---------+------+--------+------+
| pd.isna | yes | yes | yes | yes | yes |
| math.isnan | yes | yes | no | no | no |
| np.isnan | yes | yes | no | no | yes | <-- # will error on mixed type list
+------------+-----+---------+------+--------+------+
pd.isna文件
检查不同类型缺失值的最灵活方法。
所有答案都没有涵盖pd.isna的灵活性。虽然math.isnan和np.isnan将为NaN值返回True,但您无法检查None或字符串等不同类型的对象。这两个方法都会返回错误,因此检查混合类型的列表会很麻烦。而pd.isna是灵活的,它将为不同类型返回正确的布尔值:
In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: missing_values = [3, None, np.NaN, pd.NA, pd.NaT, '10']
In [4]: pd.isna(missing_values)
Out[4]: array([False, True, True, True, True, False])
我进入这篇文章,因为我在功能方面遇到了一些问题:
math.isnan()
运行此代码时出现问题:
a = "hello"
math.isnan(a)
它引发了异常。我的解决方案是再做一次检查:
def is_nan(x):
return isinstance(x, float) and math.isnan(x)
推荐文章
- 如何计算线段的法向量?
- 在Python中获取大文件的MD5哈希值
- 在Python格式字符串中%s是什么意思?
- 如何循环通过所有但最后一项的列表?
- python用什么方法避免默认参数为空列表?
- ValueError: numpy。Ndarray大小改变,可能表示二进制不兼容。期望从C头得到88,从PyObject得到80
- Anaconda /conda -安装特定的软件包版本
- 我在哪里调用Keras的BatchNormalization函数?
- 打印测试执行时间并使用py.test锁定缓慢的测试
- 插入一行到熊猫数据框架
- 要列出Pandas DataFrame列
- 在Django模型中存储电话号码的最佳方法是什么?
- 从导入的模块中模拟函数
- 滚动或滑动窗口迭代器?
- python的方法找到最大值和它的索引在一个列表?