是否有一个库函数,对列表/元组执行二进制搜索,并返回项目的位置,如果找到,如果没有'False' (-1, None等)?

我在bisect模块中找到了bisect_left/right函数,但即使项目不在列表中,它们仍然返回一个位置。这对于它们的预期用途来说是非常好的,但我只是想知道一个项目是否在列表中(不想插入任何东西)。

我想使用bisect_left,然后检查该位置的项是否等于我正在搜索的内容,但这似乎很麻烦(而且我还需要做边界检查,如果数字可以大于我的列表中最大的数字)。如果有更好的方法,我想知道。

为了澄清我需要这个:我知道字典将非常适合这个,但我试图保持尽可能低的内存消耗。我的预期用途是一种双向查找表。我在表中有一个值列表,我需要能够访问基于其索引的值。我还希望能够找到特定值的索引,如果值不在列表中,则为None。

使用字典是最快的方法,但(大约)会增加一倍的内存需求。

我问这个问题时认为我可能忽略了Python库中的一些东西。看来我得自己写代码了,就像Moe建议的那样。


当前回答

def binary_search_length_of_a_list(single_method_list):
    index = 0
    first = 0
    last = 1

    while True:
        mid = ((first + last) // 2)
        if not single_method_list.get(index):
            break
        index = mid + 1
        first = index
        last = index + 1
    return mid

其他回答

这是基于一个数学断言,即(low + high)/2的下限总是小于high,其中low是下限,high是上限。


def binsearch(t, key, low = 0, high = len(t) - 1):
    # bisecting the range
    while low < high:
        mid = (low + high)//2
        if t[mid] < key:
            low = mid + 1
        else:
            high = mid
    # at this point 'low' should point at the place
    # where the value of 'key' is possibly stored.
    return low if t[low] == key else -1

这是手册上的内容:

http://docs.python.org/2/library/bisect.html

8.5.1. 搜索排序列表

上面的bisect()函数在查找插入点时很有用,但在执行普通搜索任务时可能会有些棘手或尴尬。下面5个函数展示了如何将它们转换为排序列表的标准查找:

def index(a, x):
    'Locate the leftmost value exactly equal to x'
    i = bisect_left(a, x)
    if i != len(a) and a[i] == x:
        return i
    raise ValueError

因此,稍微修改一下你的代码应该是:

def index(a, x):
    'Locate the leftmost value exactly equal to x'
    i = bisect_left(a, x)
    if i != len(a) and a[i] == x:
        return i
    return -1

我想使用bisect_left,然后检查是否在那项 position等于我要搜索的内容,但这看起来很麻烦 (我还需要做边界检查,如果数字可以更大 而不是我列表中最大的数字)。如果有更好的方法,我会 我想了解一下。

避免边界检查或相等性检查的一种方法是同时运行bisect_left()和bisect_right():

def find(data, target):
    start = bisect_left(data, target)
    end = bisect_right(data, target)
    return -1 if start == end else start

如果你只是想看看它是否存在,试着把这个列表变成一个词典:

# Generate a list
l = [n*n for n in range(1000)]

# Convert to dict - doesn't matter what you map values to
d = dict((x, 1) for x in l)

count = 0
for n in range(1000000):
    # Compare with "if n in l"
    if n in d:
        count += 1

在我的机器上,“if n in l”需要37秒,而“if n in d”需要0.4秒。

我同意@DaveAbrahams使用等分模块的答案是正确的方法。他在回答中没有提到一个重要的细节。

从文档中平分。Bisect_left (a, x, lo=0, hi=len(a))

平分模块不需要预先计算搜索数组。你可以把端点表示为等分线。Bisect_left,而不是使用默认值0和len(a)。

对我的使用更重要的是,寻找一个值X,使给定函数的误差最小化。要做到这一点,我需要一种方法让bisect_left的算法调用我的计算。这真的很简单。

只需要提供一个对象,将__getitem__定义为

例如,我们可以使用平分算法以任意精度找到一个平方根!

import bisect

class sqrt_array(object):
    def __init__(self, digits):
        self.precision = float(10**(digits))
    def __getitem__(self, key):
        return (key/self.precision)**2.0

sa = sqrt_array(4)

# "search" in the range of 0 to 10 with a "precision" of 0.0001
index = bisect.bisect_left(sa, 7, 0, 10*10**4)
print 7**0.5
print index/(10**4.0)