是否有一个库函数,对列表/元组执行二进制搜索,并返回项目的位置,如果找到,如果没有'False' (-1, None等)?

我在bisect模块中找到了bisect_left/right函数,但即使项目不在列表中,它们仍然返回一个位置。这对于它们的预期用途来说是非常好的,但我只是想知道一个项目是否在列表中(不想插入任何东西)。

我想使用bisect_left,然后检查该位置的项是否等于我正在搜索的内容,但这似乎很麻烦(而且我还需要做边界检查,如果数字可以大于我的列表中最大的数字)。如果有更好的方法,我想知道。

为了澄清我需要这个:我知道字典将非常适合这个,但我试图保持尽可能低的内存消耗。我的预期用途是一种双向查找表。我在表中有一个值列表,我需要能够访问基于其索引的值。我还希望能够找到特定值的索引,如果值不在列表中,则为None。

使用字典是最快的方法,但(大约)会增加一倍的内存需求。

我问这个问题时认为我可能忽略了Python库中的一些东西。看来我得自己写代码了,就像Moe建议的那样。


当前回答

def binary_search_length_of_a_list(single_method_list):
    index = 0
    first = 0
    last = 1

    while True:
        mid = ((first + last) // 2)
        if not single_method_list.get(index):
            break
        index = mid + 1
        first = index
        last = index + 1
    return mid

其他回答

戴夫·亚伯拉罕斯的解决方案很好。虽然我会把它做得极简:

def binary_search(L, x):
    i = bisect.bisect_left(L, x)
    if i == len(L) or L[i] != x:
        return -1
    return i

S是一个列表。 Binary (s, 0, len(s) - 1, find)是初始调用。 函数返回查询项的索引。如果没有这样的项,则返回-1。 def二进制(s, p, q,找到): 如果发现= = s ((p + q) / 2): 返回(p + q) / 2 Elif p==q-1或p==q: 如果发现= = s[问]: 回来问 其他: 返回1 find < s[(p+q)/2]: 返回二进制(s p (p + q) / 2,找到) Elif find > s[(p+q)/2]: 返回二进制(s (p + q) / 2 + 1, q,找到)

为什么不看看bisect_left/right的代码并调整它以适合您的目的呢?

是这样的:

def binary_search(a, x, lo=0, hi=None):
    if hi is None:
        hi = len(a)
    while lo < hi:
        mid = (lo+hi)//2
        midval = a[mid]
        if midval < x:
            lo = mid+1
        elif midval > x: 
            hi = mid
        else:
            return mid
    return -1

虽然Python中没有显式的二进制搜索算法,但有一个模块- bisect -用于使用二进制搜索在排序列表中找到元素的插入点。这可以被“欺骗”为执行二分搜索。它最大的优势和大多数库代码一样——它是高性能的,经过良好测试的,并且可以正常工作(特别是二进制搜索很难成功实现——特别是在没有仔细考虑边缘情况的情况下)。

基本类型

对于基本类型,如string或int,这是非常简单的-你只需要bisect模块和一个排序列表:

>>> import bisect
>>> names = ['bender', 'fry', 'leela', 'nibbler', 'zoidberg']
>>> bisect.bisect_left(names, 'fry')
1
>>> keyword = 'fry'
>>> x = bisect.bisect_left(names, keyword)
>>> names[x] == keyword
True
>>> keyword = 'arnie'
>>> x = bisect.bisect_left(names, keyword)
>>> names[x] == keyword
False

你也可以用它来查找副本:

...
>>> names = ['bender', 'fry', 'fry', 'fry', 'leela', 'nibbler', 'zoidberg']
>>> keyword = 'fry'
>>> leftIndex = bisect.bisect_left(names, keyword)
>>> rightIndex = bisect.bisect_right(names, keyword)
>>> names[leftIndex:rightIndex]
['fry', 'fry', 'fry']

显然,如果需要,您可以只返回索引,而不是该索引处的值。

对象

对于自定义类型或对象,事情有点棘手:您必须确保实现丰富的比较方法,以便正确地进行比较。

>>> import bisect
>>> class Tag(object):  # a simple wrapper around strings
...     def __init__(self, tag):
...         self.tag = tag
...     def __lt__(self, other):
...         return self.tag < other.tag
...     def __gt__(self, other):
...         return self.tag > other.tag
...
>>> tags = [Tag('bender'), Tag('fry'), Tag('leela'), Tag('nibbler'), Tag('zoidbe
rg')]
>>> key = Tag('fry')
>>> leftIndex = bisect.bisect_left(tags, key)
>>> rightIndex = bisect.bisect_right(tags, key)
>>> print([tag.tag for tag in tags[leftIndex:rightIndex]])
['fry']

这应该至少在Python 2.7 -> 3.3中工作

这是基于一个数学断言,即(low + high)/2的下限总是小于high,其中low是下限,high是上限。


def binsearch(t, key, low = 0, high = len(t) - 1):
    # bisecting the range
    while low < high:
        mid = (low + high)//2
        if t[mid] < key:
            low = mid + 1
        else:
            high = mid
    # at this point 'low' should point at the place
    # where the value of 'key' is possibly stored.
    return low if t[low] == key else -1