我在学校里很难理解递归。每当教授谈到它的时候,我似乎都懂了,但当我自己尝试的时候,它完全震撼了我的大脑。
我整晚都在尝试着解决《Towers of Hanoi》这款游戏,结果完全出乎我的意料。我的课本只有大约30页关于递归的内容,所以它不是很有用。有人知道哪些书籍或资源可以帮助澄清这个话题吗?
我在学校里很难理解递归。每当教授谈到它的时候,我似乎都懂了,但当我自己尝试的时候,它完全震撼了我的大脑。
我整晚都在尝试着解决《Towers of Hanoi》这款游戏,结果完全出乎我的意料。我的课本只有大约30页关于递归的内容,所以它不是很有用。有人知道哪些书籍或资源可以帮助澄清这个话题吗?
当前回答
你的大脑爆炸是因为它进入了无限递归。这是初学者常犯的错误。
信不信由你,你已经理解了递归,你只是被一个常见的,但错误的函数比喻拖了下来:一个小盒子,里面有东西进进出出。
而不是考虑一个任务或过程,比如“在网上找到更多关于递归的知识”。这是递归的,没有问题。要完成这个任务,你可以:
a) Read a Google's result page for "recursion" b) Once you've read it, follow the first link on it and... a.1)Read that new page about recursion b.1)Once you've read it, follow the first link on it and... a.2)Read that new page about recursion b.2)Once you've read it, follow the first link on it and...
如您所见,您已经做了很长一段时间的递归工作,没有出现任何问题。
你会坚持做这个任务多久?永远,直到你的大脑爆炸?当然不是,只要你相信你已经完成了任务,你就会停在一个给定的点上。
当要求你“在网上找到更多关于递归的知识”时,没有必要指定这一点,因为你是一个人,你可以自己推断。
计算机无法推断任何东西,所以你必须包含一个明确的结尾:“在网上找到更多关于递归的知识,直到你理解它或你阅读了最多10页”。
您还推断应该从谷歌的结果页面开始进行“递归”,这也是计算机无法做到的。递归任务的完整描述还必须包括一个显式的起点:
“在网上找到更多关于递归的知识,直到你理解它,或者你已经阅读了最多10页,并从www.google.com/search?q=recursion开始”
要想全面了解,我建议你试试下面这些书:
普通Lisp:符号计算的简单介绍。这是对递归最可爱的非数学解释。 小阴谋家。
其他回答
Ouch. I tried to figure out the Towers of Hanoi last year. The tricky thing about TOH is it's not a simple example of recursion - you have nested recursions which also change the roles of towers on each call. The only way I could get it to make sense was to literally visualize the movement of the rings in my mind's eye, and verbalize what the recursive call would be. I would start with a single ring, then two, then three. I actually ordered the game on the internet. It took me maybe two or three days of cracking my brains to get it.
Common Lisp中的简单递归示例:
MYMAP对列表中的每个元素应用一个函数。
1)空列表没有元素,所以我们返回空列表-()和NIL都是空列表。
2)将函数应用到第一个列表,对列表的其余部分调用MYMAP(递归调用),并将两个结果合并到一个新列表中。
(DEFUN MYMAP (FUNCTION LIST)
(IF (NULL LIST)
()
(CONS (FUNCALL FUNCTION (FIRST LIST))
(MYMAP FUNCTION (REST LIST)))))
让我们观察跟踪执行。在输入函数时,输出参数。在退出函数时,输出结果。对于每个递归调用,输出将按级别缩进。
这个例子对列表(1 2 3 4)中的每个数字调用SIN函数。
Command: (mymap 'sin '(1 2 3 4))
1 Enter MYMAP SIN (1 2 3 4)
| 2 Enter MYMAP SIN (2 3 4)
| 3 Enter MYMAP SIN (3 4)
| | 4 Enter MYMAP SIN (4)
| | 5 Enter MYMAP SIN NIL
| | 5 Exit MYMAP NIL
| | 4 Exit MYMAP (-0.75680256)
| 3 Exit MYMAP (0.14112002 -0.75680256)
| 2 Exit MYMAP (0.9092975 0.14112002 -0.75680256)
1 Exit MYMAP (0.841471 0.9092975 0.14112002 -0.75680256)
这是我们的结果:
(0.841471 0.9092975 0.14112002 -0.75680256)
我会用一个例子来解释。
你知道n!意味着什么?如果不是:http://en.wikipedia.org/wiki/Factorial
3! Is 1 times 2 times 3, which is 6
下面是一些伪代码
function factorial(n) {
if (n==0) return 1
else return (n * factorial(n-1))
}
让我们试试吧:
factorial(3)
n是0吗?
no!
所以我们在递归中深入挖掘:
3 * factorial(3-1)
3 minus 1 is 2
2 == 0?
no!
所以我们要深入! 3 * 2 *阶乘(2-1) 2-1 = 1
1 == 0吗?
no!
所以我们要深入! 3 * 2 * 1 *阶乘(1-1) 1-1 = 0
0 == 0?
yes!
我们有一个小问题
所以我们有 3 * 2 * 1 * 1 = 6
我希望这对你有所帮助
当使用递归解时,我总是尝试:
首先建立基本情况,即。 当n = 1的阶乘 试着想出一个一般的规则 对于其他情况
还有不同类型的递归解,分而治之的方法对分形和其他方法很有用。
如果你能先解决一些简单的问题,只是为了掌握窍门,这也会有帮助。一些例子是求解阶乘和生成第n个斐波那契数。
作为参考,我强烈推荐Robert Sedgewick的算法。
希望这能有所帮助。祝你好运。
要理解递归,你只需要看看洗发水瓶上的标签:
function repeat()
{
rinse();
lather();
repeat();
}
这样做的问题是没有终止条件,递归将无限重复,或者直到洗发水或热水用完为止(外部终止条件,类似于吹你的堆栈)。