我无法理解这个,哪个更随机?

rand()

OR:

rand() * rand()

我发现这是一个真正的脑筋急转弯,你能帮我吗?


编辑:

直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。


当前回答

这里有一个简单的答案。考虑垄断。你掷两个六面骰子(对于喜欢游戏符号的人来说是2d6),然后求和。最常见的结果是7,因为有6种可能的方式可以掷7(1,6,5,3,44,3,5,2和6,1)。而2只能在1,1上滚动。很容易看出,掷1d6和掷1d12是不同的,即使范围相同(忽略1d12上可以得到1,点保持不变)。将结果相乘而不是相加会以类似的方式扭曲它们,因为大多数结果都位于范围的中间。如果您试图减少异常值,这是一个好方法,但它无助于使分布均匀。

(奇怪的是,它也会增加低掷。假设你的随机性从0开始,你会看到一个峰值在0,因为它会将其他掷骰变成0。考虑两个介于0和1(包括0和1)之间的随机数,然后相乘。如果其中一个结果为0,则无论其他结果如何,整个结果都将变为0。从中得到1的唯一方法是两卷都是1。在实践中,这可能无关紧要,但这会形成一个奇怪的图形。)

其他回答

大多数rand()实现都有一定的周期。也就是说,在大量的调用之后,序列会重复。rand()*rand(()的输出序列在一半时间内重复,因此在这个意义上它“不那么随机”。

此外,如果没有仔细的构造,对随机值执行算术往往会导致较少的随机性。上面的一张海报引用了“rand()+rand(()+rand()…”(例如,k倍),这实际上会倾向于rand(返回值范围的平均值的k倍。(这是一种随机行走,步数与平均值对称。)

具体来说,假设rand()函数返回[0,1)范围内的均匀分布随机实数。(是的,这个例子允许无限精度。这不会改变结果。)您没有选择特定的语言,不同的语言可能会做不同的事情,但以下分析适用于对rand()的任何非反常实现的修改。乘积rand()*rand(()也在[0,1)范围内,但不再均匀分布。事实上,乘积在区间[0,1/4)和区间[1/4,1)中的可能性一样大。更多的乘法将使结果进一步趋向于零。这使得结果更可预测。在广义上,更可预测的==更少的随机性。

几乎所有对均匀随机输入的操作序列都是非均匀随机的,从而提高了可预测性。小心的话,我们可以克服这一特性,但这样就可以更容易地在实际需要的范围内生成一个均匀分布的随机数,而不是在算术上浪费时间。

这不是很明显,但rand()通常比rand(*rand)更随机。重要的是,对于大多数用途来说,这实际上不是很重要。

但首先,它们产生了不同的分布。如果这是你想要的,这不是问题,但这很重要。如果你需要一个特定的分布,那么忽略整个“哪个更随机”的问题。那么为什么rand()更随机呢?

rand()之所以更随机(假设它产生的是[0..1]范围内的浮点随机数,这是非常常见的)的核心是,当你将两个FP数与尾数中的大量信息相乘时,你会在结尾处丢失一些信息;IEEE双精度浮点中没有足够的位来保存从[0..1]中均匀随机选择的两个IEEE双精度浮点数中的所有信息,这些额外的信息位将丢失。当然,这无关紧要,因为你(可能)不会使用这些信息,但损失是真实的。您产生哪种分布(即,使用哪种操作进行组合)也并不重要。这些随机数中的每一个都有(最多)52位随机信息——这就是IEEE双精度的容量——如果你将两个或多个随机数合并为一个,那么你仍然只能拥有最多52位的随机信息。

大多数随机数的使用甚至没有使用随机源中实际可用的那么多随机性。得到一个好的PRNG,不要太担心它。(“好”的程度取决于你在用它做什么;你在做蒙特卡洛模拟或密码学时必须小心,否则你可能会使用标准PRNG,因为这通常要快得多。)

很容易证明两个随机数之和不一定是随机的。假设你有一个6面骰子。每个数字有1/6的机会出现。现在假设你有2个骰子,并将结果相加。这些总数的分布不是1/12。为什么?因为某些数字比其他数字更多。它们有多个分区。例如,数字2仅是1+1的和,但7可以由3+4、4+3或5+2等组成,因此它出现的机会更大。

因此,在本例中,对随机函数应用变换(在这种情况下为加法)不会使其更随机,或必然保持随机性。在上述骰子的情况下,分布偏向于7,因此随机性较小。

“随机”与“更随机”有点像问哪个零更为零。

在这种情况下,rand是PRNG,所以不是完全随机的。(事实上,如果种子是已知的,那是完全可以预测的)。将其乘以另一个值,使其不再随机。

真正的加密类型RNG实际上是随机的。通过任何类型的函数运行值都不能增加更多的熵,而且很可能会删除熵,使其不再随机。

你要寻找的概念是“熵”,即弦的无序程度位。从“最大熵”的概念来看,这个概念最容易理解。

具有最大熵的比特串的一个近似定义是,它不能用更短的比特串来精确表达(即,使用某种算法将较小的字符串扩展回原始字符串)。

最大熵与随机性的相关性源于以下事实:如果你“随机”选择一个数字,你几乎肯定会选择一个其比特串接近于具有最大熵,也就是说,它不能被压缩。这是我们对“随机”数特征的最好理解。

所以,如果你想从两个随机样本中产生一个随机数,它是随机,将两个位字符串连接在一起。实际上,你只是将样本填充到双倍长度单词的高半部分和低半部分。

从更实际的角度来看,如果你发现自己背负着一个蹩脚的rand(),它可以有时有助于将两个样本混合在一起——尽管,如果真的是盈亏平衡的话那个程序没用。