假设这个字符串:

The   fox jumped   over    the log.

变成:

The fox jumped over the log.

在不分割和进入列表的情况下,最简单的实现方法(1-2行)是什么?


当前回答

令人惊讶的是,没有人发布一个简单的函数,它会比所有其他发布的解决方案快得多。是这样的:

def compactSpaces(s):
    os = ""
    for c in s:
        if c != " " or (os and os[-1] != " "):
            os += c 
    return os

其他回答

import re

Text = " You can select below trims for removing white space!!   BR Aliakbar     "
  # trims all white spaces
print('Remove all space:',re.sub(r"\s+", "", Text), sep='') 
# trims left space
print('Remove leading space:', re.sub(r"^\s+", "", Text), sep='') 
# trims right space
print('Remove trailing spaces:', re.sub(r"\s+$", "", Text), sep='')  
# trims both
print('Remove leading and trailing spaces:', re.sub(r"^\s+|\s+$", "", Text), sep='')
# replace more than one white space in the string with one white space
print('Remove more than one space:',re.sub(' +', ' ',Text), sep='') 

结果:作为代码

"Remove all space:Youcanselectbelowtrimsforremovingwhitespace!!BRAliakbar"
"Remove leading space:You can select below trims for removing white space!!   BR Aliakbar"     
"Remove trailing spaces: You can select below trims for removing white space!!   BR Aliakbar"
"Remove leading and trailing spaces:You can select below trims for removing white space!!   BR Aliakbar"
"Remove more than one space: You can select below trims for removing white space!! BR Aliakbar" 

" ".join(foo.split())对于所问的问题不太正确,因为它也完全删除了单个前导和/或尾随空格。所以,如果它们也将被1个空白替换,你应该像下面这样做:

" ".join(('*' + foo + '*').split()) [1:-1]

当然,它没有那么优雅。

我不得不同意Paul McGuire的评论。对我来说,

' '.join(the_string.split())

比快速生成正则表达式要好得多。

我的测量结果(Linux和Python 2.5)显示,先分离后连接的速度几乎比“re.sub(…)”快5倍,如果你一次预编译正则表达式并多次执行该操作,速度仍然快3倍。而且无论从哪方面看,它都更容易理解——更python化。

类似于前面的解决方案,但更具体:用一个空格替换两个或多个空格:

>>> import re
>>> s = "The   fox jumped   over    the log."
>>> re.sub('\s{2,}', ' ', s)
'The fox jumped over the log.'

你也可以在Pandas DataFrame中使用字符串分割技术,而不需要使用.apply(..),如果你需要对大量字符串快速执行操作,这是非常有用的。这是一行话:

df['message'] = (df['message'].str.split()).str.join(' ')