在我多年的编程生涯中,我经常使用递归来解决简单的问题,但我完全意识到,有时由于内存/速度问题,您需要迭代。
所以,在很久以前的某个时候,我去尝试寻找是否存在任何“模式”或教科书上的方法来将常见的递归方法转换为迭代,但一无所获。至少我想不起有什么帮助。
有一般的规则吗? 有“模式”吗?
在我多年的编程生涯中,我经常使用递归来解决简单的问题,但我完全意识到,有时由于内存/速度问题,您需要迭代。
所以,在很久以前的某个时候,我去尝试寻找是否存在任何“模式”或教科书上的方法来将常见的递归方法转换为迭代,但一无所获。至少我想不起有什么帮助。
有一般的规则吗? 有“模式”吗?
当前回答
要寻找的一种模式是函数末尾的递归调用(所谓的尾部递归)。这很容易用一段时间来代替。例如,函数foo:
void foo(Node* node)
{
if(node == NULL)
return;
// Do something with node...
foo(node->left);
foo(node->right);
}
以调用foo结束。这可以替换为:
void foo(Node* node)
{
while(node != NULL)
{
// Do something with node...
foo(node->left);
node = node->right;
}
}
这消除了第二次递归调用。
其他回答
努力使你的递归调用尾部递归(递归的最后一个语句是递归调用)。一旦你有了它,将它转换为迭代通常是相当容易的。
我的例子是用Clojure编写的,但是应该很容易翻译成任何语言。
给定这个函数,当n值较大时StackOverflows:
(defn factorial [n]
(if (< n 2)
1
(*' n (factorial (dec n)))))
我们可以用以下方式定义一个使用自己堆栈的版本:
(defn factorial [n]
(loop [n n
stack []]
(if (< n 2)
(return 1 stack)
;; else loop with new values
(recur (dec n)
;; push function onto stack
(cons (fn [n-1!]
(*' n n-1!))
stack)))))
其中return定义为:
(defn return
[v stack]
(reduce (fn [acc f]
(f acc))
v
stack))
这也适用于更复杂的函数,例如阿克曼函数:
(defn ackermann [m n]
(cond
(zero? m)
(inc n)
(zero? n)
(recur (dec m) 1)
:else
(recur (dec m)
(ackermann m (dec n)))))
可以转化为:
(defn ackermann [m n]
(loop [m m
n n
stack []]
(cond
(zero? m)
(return (inc n) stack)
(zero? n)
(recur (dec m) 1 stack)
:else
(recur m
(dec n)
(cons #(ackermann (dec m) %)
stack)))))
想想那些真正需要堆栈的东西:
如果我们考虑递归的模式为:
if(task can be done directly) {
return result of doing task directly
} else {
split task into two or more parts
solve for each part (possibly by recursing)
return result constructed by combining these solutions
}
例如,经典的河内塔
if(the number of discs to move is 1) {
just move it
} else {
move n-1 discs to the spare peg
move the remaining disc to the target peg
move n-1 discs from the spare peg to the target peg, using the current peg as a spare
}
这可以转化为一个循环工作在一个显式的堆栈,通过重申它为:
place seed task on stack
while stack is not empty
take a task off the stack
if(task can be done directly) {
Do it
} else {
Split task into two or more parts
Place task to consolidate results on stack
Place each task on stack
}
}
对于《河内塔》来说,这就变成了:
stack.push(new Task(size, from, to, spare));
while(! stack.isEmpty()) {
task = stack.pop();
if(task.size() = 1) {
just move it
} else {
stack.push(new Task(task.size() -1, task.spare(), task,to(), task,from()));
stack.push(new Task(1, task.from(), task.to(), task.spare()));
stack.push(new Task(task.size() -1, task.from(), task.spare(), task.to()));
}
}
在如何定义堆栈方面,这里有相当大的灵活性。你可以让你的堆栈成为一个Command对象列表,这些对象可以做一些复杂的事情。或者你可以走相反的方向,让它成为一个简单类型的列表(例如,一个“task”可能是一个int堆栈上的4个元素,而不是一个task堆栈上的一个元素)。
这意味着堆栈的内存在堆中,而不是在Java执行堆栈中,但这可能很有用,因为您可以更好地控制它。
另一个使用堆栈将递归函数转换为迭代函数的简单而完整的示例。
#include <iostream>
#include <stack>
using namespace std;
int GCD(int a, int b) { return b == 0 ? a : GCD(b, a % b); }
struct Par
{
int a, b;
Par() : Par(0, 0) {}
Par(int _a, int _b) : a(_a), b(_b) {}
};
int GCDIter(int a, int b)
{
stack<Par> rcstack;
if (b == 0)
return a;
rcstack.push(Par(b, a % b));
Par p;
while (!rcstack.empty())
{
p = rcstack.top();
rcstack.pop();
if (p.b == 0)
continue;
rcstack.push(Par(p.b, p.a % p.b));
}
return p.a;
}
int main()
{
//cout << GCD(24, 36) << endl;
cout << GCDIter(81, 36) << endl;
cin.get();
return 0;
}
有一种将递归遍历转换为迭代器的通用方法,即使用连接多个迭代器提供者的惰性迭代器(返回迭代器的lambda表达式)。请参阅我的将递归遍历转换为迭代器。