在我多年的编程生涯中,我经常使用递归来解决简单的问题,但我完全意识到,有时由于内存/速度问题,您需要迭代。

所以,在很久以前的某个时候,我去尝试寻找是否存在任何“模式”或教科书上的方法来将常见的递归方法转换为迭代,但一无所获。至少我想不起有什么帮助。

有一般的规则吗? 有“模式”吗?


当前回答

This is an old question but I want to add a different aspect as a solution. I'm currently working on a project in which I used the flood fill algorithm using C#. Normally, I implemented this algorithm with recursion at first, but obviously, it caused a stack overflow. After that, I changed the method from recursion to iteration. Yes, It worked and I was no longer getting the stack overflow error. But this time, since I applied the flood fill method to very large structures, the program was going into an infinite loop. For this reason, it occurred to me that the function may have re-entered the places it had already visited. As a definitive solution to this, I decided to use a dictionary for visited points. If that node(x,y) has already been added to the stack structure for the first time, that node(x,y) will be saved in the dictionary as the key. Even if the same node is tried to be added again later, it won't be added to the stack structure because the node is already in the dictionary. Let's see on pseudo-code:

startNode = pos(x,y)

Stack stack = new Stack();

Dictionary visited<pos, bool> = new Dictionary();

stack.Push(startNode);

while(stack.count != 0){
    currentNode = stack.Pop();
    if "check currentNode if not available"
        continue;
    if "check if already handled"
        continue;
    else if "run if it must be wanted thing should be handled"      
        // make something with pos currentNode.X and currentNode.X  
        
        // then add its neighbor nodes to the stack to iterate
        // but at first check if it has already been visited.
        
        if(!visited.Contains(pos(x-1,y)))
            visited[pos(x-1,y)] = true;
            stack.Push(pos(x-1,y));
        if(!visited.Contains(pos(x+1,y)))
            ...
        if(!visited.Contains(pos(x,y+1)))
            ...
        if(!visited.Contains(pos(x,y-1)))
            ...
}

其他回答

即使使用堆栈也不能将递归算法转换为迭代算法。普通的递归是基于函数的递归,如果我们使用堆栈,那么它就变成了基于堆栈的递归。但它仍然是递归。

对于递归算法,空间复杂度为O(N),时间复杂度为O(N)。 对于迭代算法,空间复杂度为O(1),时间复杂度为O(N)。

但是如果我们使用堆栈的话复杂度还是一样的。我认为只有尾递归可以转化为迭代。

通常避免栈溢出的技术是递归函数,称为蹦床技术,被Java开发人员广泛采用。

然而,对于c#来说,这里有一个小的助手方法,可以将递归函数转换为迭代函数,而不需要改变逻辑或使代码难以理解。c#是一门很好的语言,用它可以做很多神奇的事情。

它的工作原理是用一个辅助方法来包装方法的各个部分。例如下面的递归函数:

int Sum(int index, int[] array)
{
 //This is the termination condition
 if (int >= array.Length)
 //This is the returning value when termination condition is true
 return 0;

//This is the recursive call
 var sumofrest = Sum(index+1, array);

//This is the work to do with the current item and the
 //result of recursive call
 return array[index]+sumofrest;
}

变成:

int Sum(int[] ar)
{
 return RecursionHelper<int>.CreateSingular(i => i >= ar.Length, i => 0)
 .RecursiveCall((i, rv) => i + 1)
 .Do((i, rv) => ar[i] + rv)
 .Execute(0);
}

这个链接提供了一些解释,并提出了保持“位置”的想法,以便能够在几个递归调用之间到达确切的位置:

但是,所有这些示例都描述了递归调用进行固定次数的场景。当你遇到以下情况时,事情就变得棘手了:

function rec(...) {
  for/while loop {
    var x = rec(...)
    // make a side effect involving return value x
  }
}

想想那些真正需要堆栈的东西:

如果我们考虑递归的模式为:

if(task can be done directly) {
    return result of doing task directly
} else {
    split task into two or more parts
    solve for each part (possibly by recursing)
    return result constructed by combining these solutions
}

例如,经典的河内塔

if(the number of discs to move is 1) {
    just move it
} else {
    move n-1 discs to the spare peg
    move the remaining disc to the target peg
    move n-1 discs from the spare peg to the target peg, using the current peg as a spare
}

这可以转化为一个循环工作在一个显式的堆栈,通过重申它为:

place seed task on stack
while stack is not empty 
   take a task off the stack
   if(task can be done directly) {
      Do it
   } else {
      Split task into two or more parts
      Place task to consolidate results on stack
      Place each task on stack
   }
}

对于《河内塔》来说,这就变成了:

stack.push(new Task(size, from, to, spare));
while(! stack.isEmpty()) {
    task = stack.pop();
    if(task.size() = 1) {
        just move it
    } else {
        stack.push(new Task(task.size() -1, task.spare(), task,to(), task,from()));
        stack.push(new Task(1, task.from(), task.to(), task.spare()));
        stack.push(new Task(task.size() -1, task.from(), task.spare(), task.to()));
    }
}

在如何定义堆栈方面,这里有相当大的灵活性。你可以让你的堆栈成为一个Command对象列表,这些对象可以做一些复杂的事情。或者你可以走相反的方向,让它成为一个简单类型的列表(例如,一个“task”可能是一个int堆栈上的4个元素,而不是一个task堆栈上的一个元素)。

这意味着堆栈的内存在堆中,而不是在Java执行堆栈中,但这可能很有用,因为您可以更好地控制它。

另一个使用堆栈将递归函数转换为迭代函数的简单而完整的示例。

#include <iostream>
#include <stack>
using namespace std;

int GCD(int a, int b) { return b == 0 ? a : GCD(b, a % b); }

struct Par
{
    int a, b;
    Par() : Par(0, 0) {}
    Par(int _a, int _b) : a(_a), b(_b) {}
};

int GCDIter(int a, int b)
{
    stack<Par> rcstack;

    if (b == 0)
        return a;
    rcstack.push(Par(b, a % b));

    Par p;
    while (!rcstack.empty()) 
    {
        p = rcstack.top();
        rcstack.pop();
        if (p.b == 0)
            continue;
        rcstack.push(Par(p.b, p.a % p.b));
    }

    return p.a;
}

int main()
{
    //cout << GCD(24, 36) << endl;
    cout << GCDIter(81, 36) << endl;

    cin.get();
    return 0;
}