在我多年的编程生涯中,我经常使用递归来解决简单的问题,但我完全意识到,有时由于内存/速度问题,您需要迭代。

所以,在很久以前的某个时候,我去尝试寻找是否存在任何“模式”或教科书上的方法来将常见的递归方法转换为迭代,但一无所获。至少我想不起有什么帮助。

有一般的规则吗? 有“模式”吗?


当前回答

似乎没有人指出递归函数在主体中调用自己超过一次的位置,并处理返回递归中的特定点(即不是原始递归)。据说每一个递归都可以转化为迭代,所以这似乎是可能的。

我刚刚想出了一个如何做到这一点的c#示例。假设您有以下递归函数,它的作用类似于poststorder遍历,AbcTreeNode是一个带有指针a、b、c的3元树。

public static void AbcRecursiveTraversal(this AbcTreeNode x, List<int> list) {
        if (x != null) {
            AbcRecursiveTraversal(x.a, list);
            AbcRecursiveTraversal(x.b, list);
            AbcRecursiveTraversal(x.c, list);
            list.Add(x.key);//finally visit root
        }
}

迭代解:

        int? address = null;
        AbcTreeNode x = null;
        x = root;
        address = A;
        stack.Push(x);
        stack.Push(null)    

        while (stack.Count > 0) {
            bool @return = x == null;

            if (@return == false) {

                switch (address) {
                    case A://   
                        stack.Push(x);
                        stack.Push(B);
                        x = x.a;
                        address = A;
                        break;
                    case B:
                        stack.Push(x);
                        stack.Push(C);
                        x = x.b;
                        address = A;
                        break;
                    case C:
                        stack.Push(x);
                        stack.Push(null);
                        x = x.c;
                        address = A;
                        break;
                    case null:
                        list_iterative.Add(x.key);
                        @return = true;
                        break;
                }

            }


            if (@return == true) {
                address = (int?)stack.Pop();
                x = (AbcTreeNode)stack.Pop();
            }


        }

其他回答

只是消磨时间……递归函数

void foo(Node* node)
{
    if(node == NULL)
       return;
    // Do something with node...
    foo(node->left);
    foo(node->right);
}

可转换为

void foo(Node* node)
{
    if(node == NULL)
       return;

    // Do something with node...

    stack.push(node->right);
    stack.push(node->left);

    while(!stack.empty()) {
         node1 = stack.pop();
         if(node1 == NULL)
            continue;
         // Do something with node1...
         stack.push(node1->right);             
         stack.push(node1->left);
    }

}

实际上,最常见的方法是保留自己的堆栈。下面是一个C语言的递归快速排序函数:

void quicksort(int* array, int left, int right)
{
    if(left >= right)
        return;

    int index = partition(array, left, right);
    quicksort(array, left, index - 1);
    quicksort(array, index + 1, right);
}

以下是我们如何通过保持自己的堆栈来实现迭代:

void quicksort(int *array, int left, int right)
{
    int stack[1024];
    int i=0;

    stack[i++] = left;
    stack[i++] = right;

    while (i > 0)
    {
        right = stack[--i];
        left = stack[--i];

        if (left >= right)
             continue;

        int index = partition(array, left, right);
        stack[i++] = left;
        stack[i++] = index - 1;
        stack[i++] = index + 1;
        stack[i++] = right;
    }
}

显然,这个例子没有检查堆栈边界……实际上,你可以根据最坏的情况来确定堆栈的大小。但你懂的。

一般来说,通过简单地使用存储变量,可以将递归模拟为迭代。注意,递归和迭代通常是等价的;其中一种几乎总是可以转化为另一种。尾递归函数很容易转化为迭代函数。只需要将累加器变量设置为局部变量,并迭代而不是递归。下面是c++中的一个例子(如果不使用默认参数的话):

// tail-recursive
int factorial (int n, int acc = 1)
{
  if (n == 1)
    return acc;
  else
    return factorial(n - 1, acc * n);
}

// iterative
int factorial (int n)
{
  int acc = 1;
  for (; n > 1; --n)
    acc *= n;
  return acc;
}

据我所知,我可能在代码中犯了一个错误,但想法是存在的。

这个链接提供了一些解释,并提出了保持“位置”的想法,以便能够在几个递归调用之间到达确切的位置:

但是,所有这些示例都描述了递归调用进行固定次数的场景。当你遇到以下情况时,事情就变得棘手了:

function rec(...) {
  for/while loop {
    var x = rec(...)
    // make a side effect involving return value x
  }
}

另一个使用堆栈将递归函数转换为迭代函数的简单而完整的示例。

#include <iostream>
#include <stack>
using namespace std;

int GCD(int a, int b) { return b == 0 ? a : GCD(b, a % b); }

struct Par
{
    int a, b;
    Par() : Par(0, 0) {}
    Par(int _a, int _b) : a(_a), b(_b) {}
};

int GCDIter(int a, int b)
{
    stack<Par> rcstack;

    if (b == 0)
        return a;
    rcstack.push(Par(b, a % b));

    Par p;
    while (!rcstack.empty()) 
    {
        p = rcstack.top();
        rcstack.pop();
        if (p.b == 0)
            continue;
        rcstack.push(Par(p.b, p.a % p.b));
    }

    return p.a;
}

int main()
{
    //cout << GCD(24, 36) << endl;
    cout << GCDIter(81, 36) << endl;

    cin.get();
    return 0;
}