在我多年的编程生涯中,我经常使用递归来解决简单的问题,但我完全意识到,有时由于内存/速度问题,您需要迭代。

所以,在很久以前的某个时候,我去尝试寻找是否存在任何“模式”或教科书上的方法来将常见的递归方法转换为迭代,但一无所获。至少我想不起有什么帮助。

有一般的规则吗? 有“模式”吗?


当前回答

想想那些真正需要堆栈的东西:

如果我们考虑递归的模式为:

if(task can be done directly) {
    return result of doing task directly
} else {
    split task into two or more parts
    solve for each part (possibly by recursing)
    return result constructed by combining these solutions
}

例如,经典的河内塔

if(the number of discs to move is 1) {
    just move it
} else {
    move n-1 discs to the spare peg
    move the remaining disc to the target peg
    move n-1 discs from the spare peg to the target peg, using the current peg as a spare
}

这可以转化为一个循环工作在一个显式的堆栈,通过重申它为:

place seed task on stack
while stack is not empty 
   take a task off the stack
   if(task can be done directly) {
      Do it
   } else {
      Split task into two or more parts
      Place task to consolidate results on stack
      Place each task on stack
   }
}

对于《河内塔》来说,这就变成了:

stack.push(new Task(size, from, to, spare));
while(! stack.isEmpty()) {
    task = stack.pop();
    if(task.size() = 1) {
        just move it
    } else {
        stack.push(new Task(task.size() -1, task.spare(), task,to(), task,from()));
        stack.push(new Task(1, task.from(), task.to(), task.spare()));
        stack.push(new Task(task.size() -1, task.from(), task.spare(), task.to()));
    }
}

在如何定义堆栈方面,这里有相当大的灵活性。你可以让你的堆栈成为一个Command对象列表,这些对象可以做一些复杂的事情。或者你可以走相反的方向,让它成为一个简单类型的列表(例如,一个“task”可能是一个int堆栈上的4个元素,而不是一个task堆栈上的一个元素)。

这意味着堆栈的内存在堆中,而不是在Java执行堆栈中,但这可能很有用,因为您可以更好地控制它。

其他回答

似乎没有人指出递归函数在主体中调用自己超过一次的位置,并处理返回递归中的特定点(即不是原始递归)。据说每一个递归都可以转化为迭代,所以这似乎是可能的。

我刚刚想出了一个如何做到这一点的c#示例。假设您有以下递归函数,它的作用类似于poststorder遍历,AbcTreeNode是一个带有指针a、b、c的3元树。

public static void AbcRecursiveTraversal(this AbcTreeNode x, List<int> list) {
        if (x != null) {
            AbcRecursiveTraversal(x.a, list);
            AbcRecursiveTraversal(x.b, list);
            AbcRecursiveTraversal(x.c, list);
            list.Add(x.key);//finally visit root
        }
}

迭代解:

        int? address = null;
        AbcTreeNode x = null;
        x = root;
        address = A;
        stack.Push(x);
        stack.Push(null)    

        while (stack.Count > 0) {
            bool @return = x == null;

            if (@return == false) {

                switch (address) {
                    case A://   
                        stack.Push(x);
                        stack.Push(B);
                        x = x.a;
                        address = A;
                        break;
                    case B:
                        stack.Push(x);
                        stack.Push(C);
                        x = x.b;
                        address = A;
                        break;
                    case C:
                        stack.Push(x);
                        stack.Push(null);
                        x = x.c;
                        address = A;
                        break;
                    case null:
                        list_iterative.Add(x.key);
                        @return = true;
                        break;
                }

            }


            if (@return == true) {
                address = (int?)stack.Pop();
                x = (AbcTreeNode)stack.Pop();
            }


        }

这个链接提供了一些解释,并提出了保持“位置”的想法,以便能够在几个递归调用之间到达确切的位置:

但是,所有这些示例都描述了递归调用进行固定次数的场景。当你遇到以下情况时,事情就变得棘手了:

function rec(...) {
  for/while loop {
    var x = rec(...)
    // make a side effect involving return value x
  }
}

一个被关闭为这个问题的副本的问题有一个非常特定的数据结构:

节点结构如下:

typedef struct {
    int32_t type;
    int32_t valueint;
    double  valuedouble;
    struct  cNODE *next;
    struct  cNODE *prev;
    struct  cNODE *child;
} cNODE;

递归删除函数如下所示:

void cNODE_Delete(cNODE *c) {
    cNODE*next;
    while (c) {
        next=c->next;
        if (c->child) { 
          cNODE_Delete(c->child)
        }
        free(c);
        c=next;
    }
}

一般来说,对于多次(甚至一次)调用自身的递归函数,避免使用堆栈并不总是可能的。然而,对于这种特殊的结构,这是可能的。其思想是将所有节点平展为单个列表。这是通过将当前节点的子节点放在顶部行列表的末尾来实现的。

void cNODE_Delete (cNODE *c) {
    cNODE *tmp, *last = c;
    while (c) {
        while (last->next) {
            last = last->next;   /* find last */
        }
        if ((tmp = c->child)) {
            c->child = NULL;     /* append child to last */
            last->next = tmp;
            tmp->prev = last;
        }
        tmp = c->next;           /* remove current */
        free(c);
        c = tmp;
    }
}

这种技术可以应用于任何可以简化为具有确定性拓扑顺序的DAG的数据链接结构。当前节点子节点被重新排列,以便最后一个子节点采用所有其他子节点。然后可以删除当前节点,然后遍历可以迭代到剩余的子节点。

通常,通过将通常传递给递归函数的参数推入堆栈,我将递归算法替换为迭代算法。事实上,您正在用自己的程序堆栈替换程序堆栈。

var stack = [];
stack.push(firstObject);

// while not empty
while (stack.length) {

    // Pop off end of stack.
    obj = stack.pop();

    // Do stuff.
    // Push other objects on the stack as needed.
    ...

}

注意:如果你在里面有多个递归调用,并且你想要保留调用的顺序,你必须以相反的顺序将它们添加到堆栈:

foo(first);
foo(second);

必须由

stack.push(second);
stack.push(first);

编辑:文章堆栈和递归消除(或文章备份链接)详细介绍了这个主题。

我的例子是用Clojure编写的,但是应该很容易翻译成任何语言。

给定这个函数,当n值较大时StackOverflows:

(defn factorial [n]
  (if (< n 2)
    1
    (*' n (factorial (dec n)))))

我们可以用以下方式定义一个使用自己堆栈的版本:

(defn factorial [n]
  (loop [n n
         stack []]
    (if (< n 2)
      (return 1 stack)
      ;; else loop with new values
      (recur (dec n)
             ;; push function onto stack
             (cons (fn [n-1!]
                     (*' n n-1!))
                   stack)))))

其中return定义为:

(defn return
  [v stack]
  (reduce (fn [acc f]
            (f acc))
          v
          stack))

这也适用于更复杂的函数,例如阿克曼函数:

(defn ackermann [m n]
  (cond
    (zero? m)
    (inc n)

    (zero? n)
    (recur (dec m) 1)

    :else
    (recur (dec m)
           (ackermann m (dec n)))))

可以转化为:

(defn ackermann [m n]
  (loop [m m
         n n
         stack []]
    (cond
      (zero? m)
      (return (inc n) stack)

      (zero? n)
      (recur (dec m) 1 stack)

      :else
      (recur m
             (dec n)
             (cons #(ackermann (dec m) %)
                   stack)))))