我如何确定两条直线是否相交,如果相交,在x,y点处?
当前回答
上面有很多解决方案,但我认为下面的解决方案很简单,很容易理解。
矢量AB和矢量CD相交当且仅当
端点a和b在线段CD的两边。 端点c和d在线段AB的对边。
更具体地说,a和b在线段CD的对面当且仅当两个三元组中有一个是逆时针顺序的。
Intersect(a, b, c, d)
if CCW(a, c, d) == CCW(b, c, d)
return false;
else if CCW(a, b, c) == CCW(a, b, d)
return false;
else
return true;
这里的CCW代表逆时针,根据点的方向返回真/假。
来源:http://compgeom.cs.uiuc.edu/~jeffe/teaching/373/notes/x06-sweepline.pdf 第二页
其他回答
基于@Gareth Rees的回答,Python版本:
import numpy as np
def np_perp( a ) :
b = np.empty_like(a)
b[0] = a[1]
b[1] = -a[0]
return b
def np_cross_product(a, b):
return np.dot(a, np_perp(b))
def np_seg_intersect(a, b, considerCollinearOverlapAsIntersect = False):
# https://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect/565282#565282
# http://www.codeproject.com/Tips/862988/Find-the-intersection-point-of-two-line-segments
r = a[1] - a[0]
s = b[1] - b[0]
v = b[0] - a[0]
num = np_cross_product(v, r)
denom = np_cross_product(r, s)
# If r x s = 0 and (q - p) x r = 0, then the two lines are collinear.
if np.isclose(denom, 0) and np.isclose(num, 0):
# 1. If either 0 <= (q - p) * r <= r * r or 0 <= (p - q) * s <= * s
# then the two lines are overlapping,
if(considerCollinearOverlapAsIntersect):
vDotR = np.dot(v, r)
aDotS = np.dot(-v, s)
if (0 <= vDotR and vDotR <= np.dot(r,r)) or (0 <= aDotS and aDotS <= np.dot(s,s)):
return True
# 2. If neither 0 <= (q - p) * r = r * r nor 0 <= (p - q) * s <= s * s
# then the two lines are collinear but disjoint.
# No need to implement this expression, as it follows from the expression above.
return None
if np.isclose(denom, 0) and not np.isclose(num, 0):
# Parallel and non intersecting
return None
u = num / denom
t = np_cross_product(v, s) / denom
if u >= 0 and u <= 1 and t >= 0 and t <= 1:
res = b[0] + (s*u)
return res
# Otherwise, the two line segments are not parallel but do not intersect.
return None
以下是对加文回答的改进。马普的解决方案也类似,但都没有推迟分割。
这实际上也是Gareth Rees的答案的一个实际应用,因为向量积在2D中的等价是补点积,这段代码用了其中的三个。切换到3D并使用叉积,在最后插入s和t,结果是3D中直线之间的两个最近点。 不管怎样,2D解:
int get_line_intersection(float p0_x, float p0_y, float p1_x, float p1_y,
float p2_x, float p2_y, float p3_x, float p3_y, float *i_x, float *i_y)
{
float s02_x, s02_y, s10_x, s10_y, s32_x, s32_y, s_numer, t_numer, denom, t;
s10_x = p1_x - p0_x;
s10_y = p1_y - p0_y;
s32_x = p3_x - p2_x;
s32_y = p3_y - p2_y;
denom = s10_x * s32_y - s32_x * s10_y;
if (denom == 0)
return 0; // Collinear
bool denomPositive = denom > 0;
s02_x = p0_x - p2_x;
s02_y = p0_y - p2_y;
s_numer = s10_x * s02_y - s10_y * s02_x;
if ((s_numer < 0) == denomPositive)
return 0; // No collision
t_numer = s32_x * s02_y - s32_y * s02_x;
if ((t_numer < 0) == denomPositive)
return 0; // No collision
if (((s_numer > denom) == denomPositive) || ((t_numer > denom) == denomPositive))
return 0; // No collision
// Collision detected
t = t_numer / denom;
if (i_x != NULL)
*i_x = p0_x + (t * s10_x);
if (i_y != NULL)
*i_y = p0_y + (t * s10_y);
return 1;
}
基本上,它将除法延迟到最后一刻,并将大多数测试移动到某些计算完成之前,从而增加了早期退出。最后,它还避免了直线平行时的除零情况。
您可能还想考虑使用ε检验,而不是与零比较。非常接近平行的线会产生稍微偏离的结果。这不是一个bug,这是浮点数学的一个限制。
这个解决方案可能会有所帮助
public static float GetLineYIntesept(PointF p, float slope)
{
return p.Y - slope * p.X;
}
public static PointF FindIntersection(PointF line1Start, PointF line1End, PointF line2Start, PointF line2End)
{
float slope1 = (line1End.Y - line1Start.Y) / (line1End.X - line1Start.X);
float slope2 = (line2End.Y - line2Start.Y) / (line2End.X - line2Start.X);
float yinter1 = GetLineYIntesept(line1Start, slope1);
float yinter2 = GetLineYIntesept(line2Start, slope2);
if (slope1 == slope2 && yinter1 != yinter2)
return PointF.Empty;
float x = (yinter2 - yinter1) / (slope1 - slope2);
float y = slope1 * x + yinter1;
return new PointF(x, y);
}
人们似乎对Gavin的答案很感兴趣,cortijon在评论中提出了一个javascript版本,iMalc提供了一个计算量略少的版本。一些人指出了各种代码建议的缺点,另一些人则评论了一些代码建议的效率。
iMalc通过Gavin的答案提供的算法是我目前在一个javascript项目中使用的算法,我只是想在这里提供一个清理过的版本,如果它可以帮助到任何人的话。
// Some variables for reuse, others may do this differently
var p0x, p1x, p2x, p3x, ix,
p0y, p1y, p2y, p3y, iy,
collisionDetected;
// do stuff, call other functions, set endpoints...
// note: for my purpose I use |t| < |d| as opposed to
// |t| <= |d| which is equivalent to 0 <= t < 1 rather than
// 0 <= t <= 1 as in Gavin's answer - results may vary
var lineSegmentIntersection = function(){
var d, dx1, dx2, dx3, dy1, dy2, dy3, s, t;
dx1 = p1x - p0x; dy1 = p1y - p0y;
dx2 = p3x - p2x; dy2 = p3y - p2y;
dx3 = p0x - p2x; dy3 = p0y - p2y;
collisionDetected = 0;
d = dx1 * dy2 - dx2 * dy1;
if(d !== 0){
s = dx1 * dy3 - dx3 * dy1;
if((s <= 0 && d < 0 && s >= d) || (s >= 0 && d > 0 && s <= d)){
t = dx2 * dy3 - dx3 * dy2;
if((t <= 0 && d < 0 && t > d) || (t >= 0 && d > 0 && t < d)){
t = t / d;
collisionDetected = 1;
ix = p0x + t * dx1;
iy = p0y + t * dy1;
}
}
}
};
问题C:如何检测两条线段是否相交?
我也搜索过同样的话题,但我对答案并不满意。所以我写了一篇文章,非常详细地解释了如何检查两条线段是否与大量图像相交。这是完整的(并经过测试的)java代码。
以下是这篇文章,截取了最重要的部分:
检查线段a是否与线段b相交的算法如下所示:
什么是边界框?下面是两个线段的边界框:
如果两个边界框都有交点,则移动线段a,使其中一点在(0|0)处。现在你有了一条经过a定义的原点的直线,现在以同样的方式移动线段b,检查线段b的新点是否在直线a的不同两侧。如果是这样,则反过来检查。如果也是这样,线段相交。如果不相交,它们就不相交。
问题A:两条线段在哪里相交?
你知道两条线段a和b相交。如果你不知道,用我在C题中给你的工具检查一下。
现在你可以通过一些情况,并得到解决与七年级数学(见代码和交互示例)。
问题B:你如何检测两条线是否相交?
假设点A = (x1, y1)点B = (x2, y2) C = (x_3, y_3) D = (x_4, y_4) 第一行由AB定义(A != B),第二行由CD定义(C != D)。
function doLinesIntersect(AB, CD) {
if (x1 == x2) {
return !(x3 == x4 && x1 != x3);
} else if (x3 == x4) {
return true;
} else {
// Both lines are not parallel to the y-axis
m1 = (y1-y2)/(x1-x2);
m2 = (y3-y4)/(x3-x4);
return m1 != m2;
}
}
问题D:两条直线在哪里相交?
检查问题B,它们是否相交。
直线a和b由每条直线上的两个点定义。 你基本上可以用和问题A相同的逻辑。