代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
代表数字7的8位像这样:
00000111
设置了三个比特。
确定32位整数中设置位数的算法是什么?
当前回答
对于那些想要在c++ 11中为任何无符号整数类型作为consexpr函数的人(tacklelib/include/tacklelib/utility/math.hpp):
#include <stdint.h>
#include <limits>
#include <type_traits>
const constexpr uint32_t uint32_max = (std::numeric_limits<uint32_t>::max)();
namespace detail
{
template <typename T>
inline constexpr T _count_bits_0(const T & v)
{
return v - ((v >> 1) & 0x55555555);
}
template <typename T>
inline constexpr T _count_bits_1(const T & v)
{
return (v & 0x33333333) + ((v >> 2) & 0x33333333);
}
template <typename T>
inline constexpr T _count_bits_2(const T & v)
{
return (v + (v >> 4)) & 0x0F0F0F0F;
}
template <typename T>
inline constexpr T _count_bits_3(const T & v)
{
return v + (v >> 8);
}
template <typename T>
inline constexpr T _count_bits_4(const T & v)
{
return v + (v >> 16);
}
template <typename T>
inline constexpr T _count_bits_5(const T & v)
{
return v & 0x0000003F;
}
template <typename T, bool greater_than_uint32>
struct _impl
{
static inline constexpr T _count_bits_with_shift(const T & v)
{
return
detail::_count_bits_5(
detail::_count_bits_4(
detail::_count_bits_3(
detail::_count_bits_2(
detail::_count_bits_1(
detail::_count_bits_0(v)))))) + count_bits(v >> 32);
}
};
template <typename T>
struct _impl<T, false>
{
static inline constexpr T _count_bits_with_shift(const T & v)
{
return 0;
}
};
}
template <typename T>
inline constexpr T count_bits(const T & v)
{
static_assert(std::is_integral<T>::value, "type T must be an integer");
static_assert(!std::is_signed<T>::value, "type T must be not signed");
return uint32_max >= v ?
detail::_count_bits_5(
detail::_count_bits_4(
detail::_count_bits_3(
detail::_count_bits_2(
detail::_count_bits_1(
detail::_count_bits_0(v)))))) :
detail::_impl<T, sizeof(uint32_t) < sizeof(v)>::_count_bits_with_shift(v);
}
谷歌测试库中的附加测试:
#include <stdlib.h>
#include <time.h>
namespace {
template <typename T>
inline uint32_t _test_count_bits(const T & v)
{
uint32_t count = 0;
T n = v;
while (n > 0) {
if (n % 2) {
count += 1;
}
n /= 2;
}
return count;
}
}
TEST(FunctionsTest, random_count_bits_uint32_100K)
{
srand(uint_t(time(NULL)));
for (uint32_t i = 0; i < 100000; i++) {
const uint32_t r = uint32_t(rand()) + (uint32_t(rand()) << 16);
ASSERT_EQ(_test_count_bits(r), count_bits(r));
}
}
TEST(FunctionsTest, random_count_bits_uint64_100K)
{
srand(uint_t(time(NULL)));
for (uint32_t i = 0; i < 100000; i++) {
const uint64_t r = uint64_t(rand()) + (uint64_t(rand()) << 16) + (uint64_t(rand()) << 32) + (uint64_t(rand()) << 48);
ASSERT_EQ(_test_count_bits(r), count_bits(r));
}
}
其他回答
摘自《黑客的喜悦》第66页,图5-2
int pop(unsigned x)
{
x = x - ((x >> 1) & 0x55555555);
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
x = (x + (x >> 4)) & 0x0F0F0F0F;
x = x + (x >> 8);
x = x + (x >> 16);
return x & 0x0000003F;
}
执行大约20条指令(依赖于arch),没有分支。黑客的喜悦是令人愉快的!强烈推荐。
对于232查找表和逐个遍历每个位之间的折中方法:
int bitcount(unsigned int num){
int count = 0;
static int nibblebits[] =
{0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
for(; num != 0; num >>= 4)
count += nibblebits[num & 0x0f];
return count;
}
从http://ctips.pbwiki.com/CountBits
// How about the following:
public int CountBits(int value)
{
int count = 0;
while (value > 0)
{
if (value & 1)
count++;
value <<= 1;
}
return count;
}
在我看来,“最好”的解决方案是另一个程序员(或者两年后的原始程序员)可以阅读而不需要大量注释的解决方案。你可能想要最快或最聪明的解决方案,有些人已经提供了,但我更喜欢可读性而不是聪明。
unsigned int bitCount (unsigned int value) {
unsigned int count = 0;
while (value > 0) { // until all bits are zero
if ((value & 1) == 1) // check lower bit
count++;
value >>= 1; // shift bits, removing lower bit
}
return count;
}
如果你想要更快的速度(并且假设你很好地记录了它,以帮助你的继任者),你可以使用表格查找:
// Lookup table for fast calculation of bits set in 8-bit unsigned char.
static unsigned char oneBitsInUChar[] = {
// 0 1 2 3 4 5 6 7 8 9 A B C D E F (<- n)
// =====================================================
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, // 0n
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, // 1n
: : :
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, // Fn
};
// Function for fast calculation of bits set in 16-bit unsigned short.
unsigned char oneBitsInUShort (unsigned short x) {
return oneBitsInUChar [x >> 8]
+ oneBitsInUChar [x & 0xff];
}
// Function for fast calculation of bits set in 32-bit unsigned int.
unsigned char oneBitsInUInt (unsigned int x) {
return oneBitsInUShort (x >> 16)
+ oneBitsInUShort (x & 0xffff);
}
这些依赖于特定的数据类型大小,所以它们不是那么可移植的。但是,由于许多性能优化是不可移植的,这可能不是一个问题。如果您想要可移植性,我会坚持使用可读的解决方案。
#!/user/local/bin/perl
$c=0x11BBBBAB;
$count=0;
$m=0x00000001;
for($i=0;$i<32;$i++)
{
$f=$c & $m;
if($f == 1)
{
$count++;
}
$c=$c >> 1;
}
printf("%d",$count);
ive done it through a perl script. the number taken is $c=0x11BBBBAB
B=3 1s
A=2 1s
so in total
1+1+3+3+3+2+3+3=19