我有一个熊猫DataFrame,其中包含一列字符串值。我需要根据部分字符串匹配来选择行。
类似于这个成语:
re.search(pattern, cell_in_question)
返回布尔值。我熟悉df[df['A']==“helloworld”]的语法,但似乎找不到一种方法来处理部分字符串匹配,比如“hello”。
我有一个熊猫DataFrame,其中包含一列字符串值。我需要根据部分字符串匹配来选择行。
类似于这个成语:
re.search(pattern, cell_in_question)
返回布尔值。我熟悉df[df['A']==“helloworld”]的语法,但似乎找不到一种方法来处理部分字符串匹配,比如“hello”。
当前回答
我在ipython笔记本电脑的macos上使用熊猫0.14.1。我尝试了上面的建议行:
df[df["A"].str.contains("Hello|Britain")]
并得到一个错误:
无法使用包含NA/NaN值的矢量进行索引
但当添加了“==True”条件时,效果非常好,如下所示:
df[df['A'].str.contains("Hello|Britain")==True]
其他回答
这是我最后为部分字符串匹配所做的。如果有人有更有效的方法,请告诉我。
def stringSearchColumn_DataFrame(df, colName, regex):
newdf = DataFrame()
for idx, record in df[colName].iteritems():
if re.search(regex, record):
newdf = concat([df[df[colName] == record], newdf], ignore_index=True)
return newdf
有点类似于@cs95的答案,但这里不需要指定引擎:
df.query('A.str.contains("hello").values')
假设我们在数据帧df中有一个名为“ENTITY”的列。我们可以过滤df,以获得整个数据帧df,其中“实体”列的行不包含“DM”,方法如下:
mask = df['ENTITY'].str.contains('DM')
df = df.loc[~(mask)].copy(deep=True)
快速提示:如果要基于索引中包含的部分字符串进行选择,请尝试以下操作:
df['stridx']=df.index
df[df['stridx'].str.contains("Hello|Britain")]
您可以尝试将它们视为字符串:
df[df['A'].astype(str).str.contains("Hello|Britain")]