似乎没有函数可以简单地计算numpy/scipy的移动平均值,这导致了复杂的解决方案。
我的问题有两个方面:
用numpy(正确地)实现移动平均的最简单方法是什么? 既然这似乎不是小事,而且容易出错,有没有一个很好的理由不包括电池在这种情况下?
似乎没有函数可以简单地计算numpy/scipy的移动平均值,这导致了复杂的解决方案。
我的问题有两个方面:
用numpy(正确地)实现移动平均的最简单方法是什么? 既然这似乎不是小事,而且容易出错,有没有一个很好的理由不包括电池在这种情况下?
当前回答
如果你想仔细考虑边缘条件(只从边缘的可用元素计算平均值),下面的函数可以解决这个问题。
import numpy as np
def running_mean(x, N):
out = np.zeros_like(x, dtype=np.float64)
dim_len = x.shape[0]
for i in range(dim_len):
if N%2 == 0:
a, b = i - (N-1)//2, i + (N-1)//2 + 2
else:
a, b = i - (N-1)//2, i + (N-1)//2 + 1
#cap indices to min and max indices
a = max(0, a)
b = min(dim_len, b)
out[i] = np.mean(x[a:b])
return out
>>> running_mean(np.array([1,2,3,4]), 2)
array([1.5, 2.5, 3.5, 4. ])
>>> running_mean(np.array([1,2,3,4]), 3)
array([1.5, 2. , 3. , 3.5])
其他回答
我要么使用公认答案的解决方案,稍微修改以使输出和输入的长度相同,要么使用另一个答案的评论中提到的熊猫版本。我在这里用一个可重复的例子来总结两者,以供将来参考:
import numpy as np
import pandas as pd
def moving_average(a, n):
ret = np.cumsum(a, dtype=float)
ret[n:] = ret[n:] - ret[:-n]
return ret / n
def moving_average_centered(a, n):
return pd.Series(a).rolling(window=n, center=True).mean().to_numpy()
A = [0, 0, 1, 2, 4, 5, 4]
print(moving_average(A, 3))
# [0. 0. 0.33333333 1. 2.33333333 3.66666667 4.33333333]
print(moving_average_centered(A, 3))
# [nan 0.33333333 1. 2.33333333 3.66666667 4.33333333 nan ]
如果你已经有一个已知大小的数组
import numpy as np
M=np.arange(12)
avg=[]
i=0
while i<len(M)-2: #for n point average len(M) - (n-1)
avg.append((M[i]+M[i+1]+M[i+2])/3) #n is denominator
i+=1
print(avg)
这个使用Pandas的答案是从上面改编的,因为rolling_mean不再是Pandas的一部分了
# the recommended syntax to import pandas
import pandas as pd
import numpy as np
# prepare some fake data:
# the date-time indices:
t = pd.date_range('1/1/2010', '12/31/2012', freq='D')
# the data:
x = np.arange(0, t.shape[0])
# combine the data & index into a Pandas 'Series' object
D = pd.Series(x, t)
现在,只需要在窗口大小的数据框架上调用滚动函数,在下面的例子中,窗口大小是10天。
d_mva10 = D.rolling(10).mean()
# d_mva is the same size as the original Series
# though obviously the first w values are NaN where w is the window size
d_mva10[:11]
2010-01-01 NaN
2010-01-02 NaN
2010-01-03 NaN
2010-01-04 NaN
2010-01-05 NaN
2010-01-06 NaN
2010-01-07 NaN
2010-01-08 NaN
2010-01-09 NaN
2010-01-10 4.5
2010-01-11 5.5
Freq: D, dtype: float64
下面是一个使用numba的快速实现(注意类型)。注意它确实包含移位的nan。
import numpy as np
import numba as nb
@nb.jit(nb.float64[:](nb.float64[:],nb.int64),
fastmath=True,nopython=True)
def moving_average( array, window ):
ret = np.cumsum(array)
ret[window:] = ret[window:] - ret[:-window]
ma = ret[window - 1:] / window
n = np.empty(window-1); n.fill(np.nan)
return np.concatenate((n.ravel(), ma.ravel()))
for i in range(len(Data)):
Data[i, 1] = Data[i-lookback:i, 0].sum() / lookback
试试这段代码。我认为这样更简单,也能达到目的。 回望是移动平均线的窗口。
在Data[i-lookback:i, 0].sum()中,我放了0来指代数据集的第一列,但如果你有多个列,你可以放任何你喜欢的列。