似乎没有函数可以简单地计算numpy/scipy的移动平均值,这导致了复杂的解决方案。

我的问题有两个方面:

用numpy(正确地)实现移动平均的最简单方法是什么? 既然这似乎不是小事,而且容易出错,有没有一个很好的理由不包括电池在这种情况下?


当前回答

我要么使用公认答案的解决方案,稍微修改以使输出和输入的长度相同,要么使用另一个答案的评论中提到的熊猫版本。我在这里用一个可重复的例子来总结两者,以供将来参考:

import numpy as np
import pandas as pd

def moving_average(a, n):
    ret = np.cumsum(a, dtype=float)
    ret[n:] = ret[n:] - ret[:-n]
    return ret / n

def moving_average_centered(a, n):
    return pd.Series(a).rolling(window=n, center=True).mean().to_numpy()

A = [0, 0, 1, 2, 4, 5, 4]
print(moving_average(A, 3))    
# [0.         0.         0.33333333 1.         2.33333333 3.66666667 4.33333333]
print(moving_average_centered(A, 3))
# [nan        0.33333333 1.         2.33333333 3.66666667 4.33333333 nan       ]

其他回答

所有的答案似乎都集中在预先计算的列表的情况下。对于实际运行的用例,数字一个接一个地进来,这里有一个简单的类,它提供了对最后N个值求平均的服务:

import numpy as np
class RunningAverage():
    def __init__(self, stack_size):
        self.stack = [0 for _ in range(stack_size)]
        self.ptr = 0
        self.full_cycle = False
    def add(self,value):
        self.stack[self.ptr] = value
        self.ptr += 1
        if self.ptr == len(self.stack):
            self.full_cycle = True
            self.ptr = 0
    def get_avg(self):
        if self.full_cycle:
            return np.mean(self.stack)
        else:
            return np.mean(self.stack[:self.ptr])

用法:

N = 50  # size of the averaging window
run_avg = RunningAverage(N)
for i in range(1000):
    value = <my computation>
    run_avg.add(value)
    if i % 20 ==0: # print once in 20 iters:
        print(f'the average value is {run_avg.get_avg()}')

实现这一点的一个简单方法是使用np.卷积。 这背后的思想是利用离散卷积的计算方式,并使用它来返回滚动平均值。这可以通过与np序列进行卷积来实现。长度等于我们想要的滑动窗口长度。

为了做到这一点,我们可以定义以下函数:

def moving_average(x, w):
    return np.convolve(x, np.ones(w), 'valid') / w

该函数将对序列x和长度为w的序列进行卷积。注意,所选模式是有效的,因此卷积积只对序列完全重叠的点给出。


一些例子:

x = np.array([5,3,8,10,2,1,5,1,0,2])

对于窗口长度为2的移动平均线,我们有:

moving_average(x, 2)
# array([4. , 5.5, 9. , 6. , 1.5, 3. , 3. , 0.5, 1. ])

对于长度为4的窗口:

moving_average(x, 4)
# array([6.5 , 5.75, 5.25, 4.5 , 2.25, 1.75, 2.  ])

卷积是怎么工作的?

让我们更深入地看看离散卷积是如何计算的。 下面的函数旨在复制np。卷积计算输出值:

def mov_avg(x, w):
    for m in range(len(x)-(w-1)):
        yield sum(np.ones(w) * x[m:m+w]) / w 

对于上面的同一个例子,也会得到:

list(mov_avg(x, 2))
# [4.0, 5.5, 9.0, 6.0, 1.5, 3.0, 3.0, 0.5, 1.0]

所以每一步要做的就是求1数组和当前窗口之间的内积。在这种情况下,乘以np.ones(w)是多余的,因为我们直接取序列的和。

下面是一个计算第一个输出的例子,这样会更清楚一些。假设我们想要一个w=4的窗口:

[1,1,1,1]
[5,3,8,10,2,1,5,1,0,2]
= (1*5 + 1*3 + 1*8 + 1*10) / w = 6.5

下面的输出将被计算为:

  [1,1,1,1]
[5,3,8,10,2,1,5,1,0,2]
= (1*3 + 1*8 + 1*10 + 1*2) / w = 5.75

依此类推,在所有重叠完成后返回序列的移动平均值。

通过比较下面的解决方案与使用cumsum of numpy的解决方案,这个解决方案几乎花费了一半的时间。这是因为它不需要遍历整个数组来做cumsum,然后做所有的减法。此外,如果数组很大且数量很大(可能溢出),cumsum可能是“危险的”。当然,这里也存在危险,但至少我们只把重要的数字加在一起。

def moving_average(array_numbers, n):
    if n > len(array_numbers):
      return []
    temp_sum = sum(array_numbers[:n])
    averages = [temp_sum / float(n)]
    for first_index, item in enumerate(array_numbers[n:]):
        temp_sum += item - array_numbers[first_index]
        averages.append(temp_sum / float(n))
    return averages

实际上,我想要一个稍微不同于公认答案的行为。我正在为sklearn管道构建一个移动平均特征提取器,因此我要求移动平均的输出与输入具有相同的维数。我想要的是让移动平均假设级数保持不变,即[1,2,3,4,5]与窗口2的移动平均将得到[1.5,2.5,3.5,4.5,5.0]。

对于列向量(我的用例)我们得到

def moving_average_col(X, n):
  z2 = np.cumsum(np.pad(X, ((n,0),(0,0)), 'constant', constant_values=0), axis=0)
  z1 = np.cumsum(np.pad(X, ((0,n),(0,0)), 'constant', constant_values=X[-1]), axis=0)
  return (z1-z2)[(n-1):-1]/n

对于数组

def moving_average_array(X, n):
  z2 = np.cumsum(np.pad(X, (n,0), 'constant', constant_values=0))
  z1 = np.cumsum(np.pad(X, (0,n), 'constant', constant_values=X[-1]))
  return (z1-z2)[(n-1):-1]/n

当然,不必假设填充值为常数,但在大多数情况下这样做应该足够了。

我觉得使用瓶颈可以很容易地解决这个问题

参见下面的基本示例:

import numpy as np
import bottleneck as bn

a = np.random.randint(4, 1000, size=(5, 7))
mm = bn.move_mean(a, window=2, min_count=1)

这就给出了每个轴上的移动平均值。

“mm”是“a”的移动平均值。 “窗口”是考虑移动均值的最大条目数。 "min_count"是考虑移动平均值的最小条目数(例如,对于第一个元素或如果数组有nan值)。

好在瓶颈有助于处理nan值,而且非常高效。