Python编程语言中有哪些鲜为人知但很有用的特性?

尽量将答案限制在Python核心。 每个回答一个特征。 给出一个例子和功能的简短描述,而不仅仅是文档链接。 使用标题作为第一行标记该特性。

快速链接到答案:

参数解包 牙套 链接比较运算符 修饰符 可变默认参数的陷阱/危险 描述符 字典默认的.get值 所以测试 省略切片语法 枚举 其他/ 函数作为iter()参数 生成器表达式 导入该 就地值交换 步进列表 __missing__物品 多行正则表达式 命名字符串格式化 嵌套的列表/生成器推导 运行时的新类型 .pth文件 ROT13编码 正则表达式调试 发送到发电机 交互式解释器中的制表符补全 三元表达式 试着/ / else除外 拆包+打印()函数 与声明


当前回答

可读正则表达式

在Python中,您可以将正则表达式拆分为多行,命名匹配并插入注释。

示例详细语法(来自Python):

>>> pattern = """
... ^                   # beginning of string
... M{0,4}              # thousands - 0 to 4 M's
... (CM|CD|D?C{0,3})    # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 C's),
...                     #            or 500-800 (D, followed by 0 to 3 C's)
... (XC|XL|L?X{0,3})    # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 X's),
...                     #        or 50-80 (L, followed by 0 to 3 X's)
... (IX|IV|V?I{0,3})    # ones - 9 (IX), 4 (IV), 0-3 (0 to 3 I's),
...                     #        or 5-8 (V, followed by 0 to 3 I's)
... $                   # end of string
... """
>>> re.search(pattern, 'M', re.VERBOSE)

命名匹配示例(摘自正则表达式HOWTO)

>>> p = re.compile(r'(?P<word>\b\w+\b)')
>>> m = p.search( '(((( Lots of punctuation )))' )
>>> m.group('word')
'Lots'

由于字符串字面值的串联,你也可以在不使用re.VERBOSE的情况下详细地编写一个正则表达式。

>>> pattern = (
...     "^"                 # beginning of string
...     "M{0,4}"            # thousands - 0 to 4 M's
...     "(CM|CD|D?C{0,3})"  # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 C's),
...                         #            or 500-800 (D, followed by 0 to 3 C's)
...     "(XC|XL|L?X{0,3})"  # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 X's),
...                         #        or 50-80 (L, followed by 0 to 3 X's)
...     "(IX|IV|V?I{0,3})"  # ones - 9 (IX), 4 (IV), 0-3 (0 to 3 I's),
...                         #        or 5-8 (V, followed by 0 to 3 I's)
...     "$"                 # end of string
... )
>>> print pattern
"^M{0,4}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$"

其他回答

列举

用enumerate包装一个可迭代对象,它将生成项目及其索引。

例如:


>>> a = ['a', 'b', 'c', 'd', 'e']
>>> for index, item in enumerate(a): print index, item
...
0 a
1 b
2 c
3 d
4 e
>>>

引用:

Python教程循环技术 Python文档-内置函数-枚举 PEP 279

暴露可变缓冲区

使用Python缓冲区协议在Python中公开可变的面向字节的缓冲区(2.5/2.6)。

(对不起,这里没有代码。需要使用低级C API或现有适配器模块)。

Python有一些非常意想不到的异常:

进口

这允许您在缺少库时导入替代库

try:
    import json
except ImportError:
    import simplejson as json

迭代

For循环在内部执行此操作,并捕获StopIteration:

iter([]).next()
Traceback (most recent call last):
  File "<pyshell#4>", line 1, in <module>
    iter(a).next()
StopIteration

断言

>>> try:
...     assert []
... except AssertionError:
...     print "This list should not be empty"
This list should not be empty

虽然这对于一次检查来说比较冗长,但是使用相同错误消息混合异常和布尔运算符的多次检查可以通过这种方式缩短。

简单的内置基准测试工具

Python标准库提供了一个非常易于使用的基准测试模块,称为“timeit”。您甚至可以从命令行使用它来查看几种语言结构中哪一种是最快的。

例如,

% python -m timeit 'r = range(0, 1000)' 'for i in r: pass'
10000 loops, best of 3: 48.4 usec per loop

% python -m timeit 'r = xrange(0, 1000)' 'for i in r: pass'
10000 loops, best of 3: 37.4 usec per loop

脚本的交互式调试(和doctest字符串)

我不认为这是广为人知的,但添加这一行到任何python脚本:

进口pdb;pdb.set_trace ()

将导致PDB调试器在代码的那一点弹出运行游标。我想,更鲜为人知的是,你可以在doctest中使用同样的行:

"""
>>> 1 in (1,2,3)   
Becomes
>>> import pdb; pdb.set_trace(); 1 in (1,2,3)
"""

然后可以使用调试器检出doctest环境。您不能真正逐级执行doctest,因为每一行都是自主运行的,但它是调试doctest glob和环境的好工具。