我设置了dict2 = dict1。当我编辑dict2时,原来的dict1也改变了。为什么?
>>> dict1 = {"key1": "value1", "key2": "value2"}
>>> dict2 = dict1
>>> dict2["key2"] = "WHY?!"
>>> dict1
{'key2': 'WHY?!', 'key1': 'value1'}
我设置了dict2 = dict1。当我编辑dict2时,原来的dict1也改变了。为什么?
>>> dict1 = {"key1": "value1", "key2": "value2"}
>>> dict2 = dict1
>>> dict2["key2"] = "WHY?!"
>>> dict1
{'key2': 'WHY?!', 'key1': 'value1'}
当前回答
起初,这也让我感到困惑,因为我来自C语言背景。
在C语言中,变量是内存中具有已定义类型的位置。对变量赋值会将数据复制到变量的内存位置。
但在Python中,变量更像是指向对象的指针。因此,将一个变量赋值给另一个变量并不会产生复制,它只是使变量名指向相同的对象。
其他回答
>>> dict2 = dict1
# dict2 is bind to the same Dict object which binds to dict1, so if you modify dict2, you will modify the dict1
复制Dict对象有很多方法,我简单用一下
dict_1 = {
'a':1,
'b':2
}
dict_2 = {}
dict_2.update(dict_1)
你也可以用字典理解来创建一个新字典。这避免了导入副本。
dout = dict((k,v) for k,v in mydict.items())
当然,在python >= 2.7中,你可以这样做:
dout = {k:v for k,v in mydict.items()}
但对于向后比较。,上面的方法更好。
Dict1是一个引用底层字典对象的符号。将dict1赋值给dict2只是赋值相同的引用。通过dict2符号更改键的值将更改底层对象,这也会影响dict1。这很令人困惑。
推断不可变值比推断引用要容易得多,所以尽可能地复制:
person = {'name': 'Mary', 'age': 25}
one_year_later = {**person, 'age': 26} # does not mutate person dict
这在语法上是相同的:
one_year_later = dict(person, age=26)
深度和简单的记忆方法:
当你执行dict2 = dict1时,dict2指向dict1。dict1和dict2都指向内存中的相同位置。这只是在python中使用可变对象时的正常情况。当你在python中使用可变对象时,你必须小心,因为它很难调试。
你不应该使用dict2 = dict1,而是应该使用python的copy模块中的copy(浅拷贝)和deepcopy方法来分离dict2和dict1。
正确的做法是:
>>> dict1 = {"key1": "value1", "key2": "value2"}
>>> dict2 = dict1.copy()
>>> dict2
{'key1': 'value1', 'key2': 'value2'}
>>> dict2["key2"] = "WHY?"
>>> dict2
{'key1': 'value1', 'key2': 'WHY?'}
>>> dict1
{'key1': 'value1', 'key2': 'value2'}
>>> id(dict1)
140641178056312
>>> id(dict2)
140641176198960
>>>
正如您可以看到的,dict1和dict2的id是不同的,这意味着它们都指向/引用内存中的不同位置。
此解决方案适用于具有不可变值的字典,但不适用于具有可变值的字典。
Eg:
>>> import copy
>>> dict1 = {"key1" : "value1", "key2": {"mutable": True}}
>>> dict2 = dict1.copy()
>>> dict2
{'key1': 'value1', 'key2': {'mutable': True}}
>>> dict2["key2"]["mutable"] = False
>>> dict2
{'key1': 'value1', 'key2': {'mutable': False}}
>>> dict1
{'key1': 'value1', 'key2': {'mutable': False}}
>>> id(dict1)
140641197660704
>>> id(dict2)
140641196407832
>>> id(dict1["key2"])
140641176198960
>>> id(dict2["key2"])
140641176198960
你可以看到,尽管我们对dict1应用了copy,但在dict2和dict1上,mutable的值都被更改为false,尽管我们只在dict2上更改了它。这是因为我们改变了dict1中可变dict部分的值。当我们在dict上应用复制时,它只会做一个浅复制,这意味着它将所有不可变的值复制到一个新的dict中,而不复制可变的值,但它会引用它们。
最终的解决方案是对dict1进行深度复制,以完全创建一个包含复制的所有值(包括可变值)的新dict。
>>>import copy
>>> dict1 = {"key1" : "value1", "key2": {"mutable": True}}
>>> dict2 = copy.deepcopy(dict1)
>>> dict2
{'key1': 'value1', 'key2': {'mutable': True}}
>>> id(dict1)
140641196228824
>>> id(dict2)
140641197662072
>>> id(dict1["key2"])
140641178056312
>>> id(dict2["key2"])
140641197662000
>>> dict2["key2"]["mutable"] = False
>>> dict2
{'key1': 'value1', 'key2': {'mutable': False}}
>>> dict1
{'key1': 'value1', 'key2': {'mutable': True}}
正如您所看到的,id是不同的,这意味着dict2完全是一个新的dict,其中包含dict1中的所有值。
当你想改变任何可变值而不影响原始字典时,需要使用Deepcopy。如果不是,你可以使用浅拷贝。Deepcopy很慢,因为它递归地复制原始字典中的任何嵌套值,还需要额外的内存。
正如其他人解释的那样,内置字典不能做你想做的事情。但是在Python2(可能还有python3)中,你可以很容易地创建一个ValueDict类,使用=进行复制,这样你就可以确保原始的类不会改变。
class ValueDict(dict):
def __ilshift__(self, args):
result = ValueDict(self)
if isinstance(args, dict):
dict.update(result, args)
else:
dict.__setitem__(result, *args)
return result # Pythonic LVALUE modification
def __irshift__(self, args):
result = ValueDict(self)
dict.__delitem__(result, args)
return result # Pythonic LVALUE modification
def __setitem__(self, k, v):
raise AttributeError, \
"Use \"value_dict<<='%s', ...\" instead of \"d[%s] = ...\"" % (k,k)
def __delitem__(self, k):
raise AttributeError, \
"Use \"value_dict>>='%s'\" instead of \"del d[%s]" % (k,k)
def update(self, d2):
raise AttributeError, \
"Use \"value_dict<<=dict2\" instead of \"value_dict.update(dict2)\""
# test
d = ValueDict()
d <<='apples', 5
d <<='pears', 8
print "d =", d
e = d
e <<='bananas', 1
print "e =", e
print "d =", d
d >>='pears'
print "d =", d
d <<={'blueberries': 2, 'watermelons': 315}
print "d =", d
print "e =", e
print "e['bananas'] =", e['bananas']
# result
d = {'apples': 5, 'pears': 8}
e = {'apples': 5, 'pears': 8, 'bananas': 1}
d = {'apples': 5, 'pears': 8}
d = {'apples': 5}
d = {'watermelons': 315, 'blueberries': 2, 'apples': 5}
e = {'apples': 5, 'pears': 8, 'bananas': 1}
e['bananas'] = 1
# e[0]=3
# would give:
# AttributeError: Use "value_dict<<='0', ..." instead of "d[0] = ..."
请参考这里讨论的左值修改模式:Python 2.7 -用于左值修改的干净语法。关键的观察是,str和int在Python中表现为值(即使它们实际上是不可变的对象)。在观察的同时,请注意str或int并没有什么神奇的特殊之处。dict可以以几乎相同的方式使用,我可以想到ValueDict有意义的许多情况。