我如何在0和1之间迭代0.1步?

这表示step参数不能为零:

for i in range(0, 1, 0.1):
    print(i)

当前回答

你可以使用这个函数:

def frange(start,end,step):
    return map(lambda x: x*step, range(int(start*1./step),int(end*1./step)))

其他回答

令人惊讶的是,在Python 3文档中还没有人提到推荐的解决方案:

参见: linspace菜谱展示了如何实现适用于浮点应用程序的惰性版本的range。

一旦定义,recipe就很容易使用,不需要numpy或任何其他外部库,只需要numpy.linspace()这样的函数。注意,第三个num参数指定所需值的数量,而不是step参数,例如:

print(linspace(0, 10, 5))
# linspace(0, 10, 5)
print(list(linspace(0, 10, 5)))
# [0.0, 2.5, 5.0, 7.5, 10]

下面我引用了Andrew Barnert的完整Python 3配方的修改版本:

import collections.abc
import numbers

class linspace(collections.abc.Sequence):
    """linspace(start, stop, num) -> linspace object

    Return a virtual sequence of num numbers from start to stop (inclusive).

    If you need a half-open range, use linspace(start, stop, num+1)[:-1].
    """
    def __init__(self, start, stop, num):
        if not isinstance(num, numbers.Integral) or num <= 1:
            raise ValueError('num must be an integer > 1')
        self.start, self.stop, self.num = start, stop, num
        self.step = (stop-start)/(num-1)
    def __len__(self):
        return self.num
    def __getitem__(self, i):
        if isinstance(i, slice):
            return [self[x] for x in range(*i.indices(len(self)))]
        if i < 0:
            i = self.num + i
        if i >= self.num:
            raise IndexError('linspace object index out of range')
        if i == self.num-1:
            return self.stop
        return self.start + i*self.step
    def __repr__(self):
        return '{}({}, {}, {})'.format(type(self).__name__,
                                       self.start, self.stop, self.num)
    def __eq__(self, other):
        if not isinstance(other, linspace):
            return False
        return ((self.start, self.stop, self.num) ==
                (other.start, other.stop, other.num))
    def __ne__(self, other):
        return not self==other
    def __hash__(self):
        return hash((type(self), self.start, self.stop, self.num))

与R的seq函数类似,这个函数在给定正确的步长值的情况下以任意顺序返回一个序列。最后一个值等于停止值。

def seq(start, stop, step=1):
    n = int(round((stop - start)/float(step)))
    if n > 1:
        return([start + step*i for i in range(n+1)])
    elif n == 1:
        return([start])
    else:
        return([])

结果

seq(1, 5, 0.5)

[1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]

seq(10, 0, -1)

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

seq(10, 0, -2)

[10, 8, 6, 4, 2, 0]

seq(1, 1)

[1]

这是我的解决方案,以获得浮动步长范围。 使用这个函数,不需要导入numpy,也不需要安装它。 我很确定它可以被改进和优化。请随意发表在这里。

from __future__ import division
from math import log

def xfrange(start, stop, step):

    old_start = start #backup this value

    digits = int(round(log(10000, 10)))+1 #get number of digits
    magnitude = 10**digits
    stop = int(magnitude * stop) #convert from 
    step = int(magnitude * step) #0.1 to 10 (e.g.)

    if start == 0:
        start = 10**(digits-1)
    else:
        start = 10**(digits)*start

    data = []   #create array

    #calc number of iterations
    end_loop = int((stop-start)//step)
    if old_start == 0:
        end_loop += 1

    acc = start

    for i in xrange(0, end_loop):
        data.append(acc/magnitude)
        acc += step

    return data

print xfrange(1, 2.1, 0.1)
print xfrange(0, 1.1, 0.1)
print xfrange(-1, 0.1, 0.1)

输出结果为:

[1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1]
[-1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0.0]

我的解决方案:

def seq(start, stop, step=1, digit=0):
    x = float(start)
    v = []
    while x <= stop:
        v.append(round(x,digit))
        x += step
    return v

增加循环的i的大小,然后在需要时减少它。

for i * 100 in range(0, 100, 10):
    print i / 100.0

编辑:老实说,我不记得为什么我认为这会在语法上工作

for i in range(0, 11, 1):
    print i / 10.0

这应该有期望的输出。