我想将两个词典融入一个新的词典。

x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
z = merge(x, y)

>>> z
{'a': 1, 'b': 3, 'c': 4}

每当两个字典中都有一个关键 k 时,只应保留 y(k) 的值。


当前回答

这是 Python 3.5 或更大的表达式,将使用 Reduction 的字典组合:

>>> from functools import reduce
>>> l = [{'a': 1}, {'b': 2}, {'a': 100, 'c': 3}]
>>> reduce(lambda x, y: {**x, **y}, l, {})
{'a': 100, 'b': 2, 'c': 3}

注意:即使字典列表是空的,或者只有一个元素。

在 Python 3.9 或更高版本中,Lambda 可以直接由 operator.ior 取代:

>>> from functools import reduce
>>> from operator import ior
>>> l = [{'a': 1}, {'b': 2}, {'a': 100, 'c': 3}]
>>> reduce(ior, l, {})
{'a': 100, 'b': 2, 'c': 3}

在 Python 3.8 或更低的情况下,可以使用下列作为 ior 的替代品:

>>> from functools import reduce
>>> l = [{'a': 1}, {'b': 2}, {'a': 100, 'c': 3}]
>>> reduce(lambda x, y: x.update(y) or x, l, {})
{'a': 100, 'b': 2, 'c': 3}

其他回答

在您的情况下,您可以:

z = dict(list(x.items()) + list(y.items()))

因此,如您所需,将最终定位定位为z,并使关键b的值由第二(y)定位的值正确上调:

>>> x = {'a':1, 'b': 2}
>>> y = {'b':10, 'c': 11}
>>> z = dict(list(x.items()) + list(y.items()))
>>> z
{'a': 1, 'c': 11, 'b': 10}

如果您使用 Python 2, 您甚至可以删除列表() 通话。

>>> z = dict(x.items() + y.items())
>>> z
{'a': 1, 'c': 11, 'b': 10}

如果您使用 Python 版本 3.9.0a4 或更高版本,则可以直接使用:

x = {'a':1, 'b': 2}
y = {'b':10, 'c': 11}
z = x | y
print(z)
{'a': 1, 'c': 11, 'b': 10}

深深的定律:

from typing import List, Dict
from copy import deepcopy

def merge_dicts(*from_dicts: List[Dict], no_copy: bool=False) -> Dict :
    """ no recursion deep merge of two dicts

    By default creates fresh Dict and merges all to it.

    no_copy = True, will merge all dicts to a fist one in a list without copy.
    Why? Sometime I need to combine one dictionary from "layers".
    The "layers" are not in use and dropped immediately after merging.
    """

    if no_copy:
        xerox = lambda x:x
    else:
        xerox = deepcopy

    result = xerox(from_dicts[0])

    for _from in from_dicts[1:]:
        merge_queue = [(result, _from)]
        for _to, _from in merge_queue:
            for k, v in _from.items():
                if k in _to and isinstance(_to[k], dict) and isinstance(v, dict):
                    # key collision add both are dicts.
                    # add to merging queue
                    merge_queue.append((_to[k], v))
                    continue
                _to[k] = xerox(v)

    return result

使用:

print("=============================")
print("merge all dicts to first one without copy.")
a0 = {"a":{"b":1}}
a1 = {"a":{"c":{"d":4}}}
a2 = {"a":{"c":{"f":5}, "d": 6}}
print(f"a0 id[{id(a0)}] value:{a0}")
print(f"a1 id[{id(a1)}] value:{a1}")
print(f"a2 id[{id(a2)}] value:{a2}")
r = merge_dicts(a0, a1, a2, no_copy=True)
print(f"r  id[{id(r)}] value:{r}")

print("=============================")
print("create fresh copy of all")
a0 = {"a":{"b":1}}
a1 = {"a":{"c":{"d":4}}}
a2 = {"a":{"c":{"f":5}, "d": 6}}
print(f"a0 id[{id(a0)}] value:{a0}")
print(f"a1 id[{id(a1)}] value:{a1}")
print(f"a2 id[{id(a2)}] value:{a2}")
r = merge_dicts(a0, a1, a2)
print(f"r  id[{id(r)}] value:{r}")

z1 = dict(x.items() + y.items())
z2 = dict(x, **y)

在我的机器上,至少(一个相当常见的x86_64运行Python 2.5.2),替代Z2不仅更短,更简单,而且更快。

% python -m timeit -s 'x=y=dict((i,i) for i in range(20))' 'z1=dict(x.items() + y.items())'
100000 loops, best of 3: 5.67 usec per loop
% python -m timeit -s 'x=y=dict((i,i) for i in range(20))' 'z2=dict(x, **y)' 
100000 loops, best of 3: 1.53 usec per loop

示例2:不超越的字典,将252条短线地图到整条,反之亦然:

% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z1=dict(x.items() + y.items())'
1000 loops, best of 3: 260 usec per loop
% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z2=dict(x, **y)'               
10000 loops, best of 3: 26.9 usec per loop

z2赢得了大约10的因素,这在我的书中是一个相当大的胜利!

在比较这两个之后,我想知道 z1 的不良性能是否可以归功于构建两个项目列表的顶端,这反过来导致我想知道这个变量是否会更好地工作:

from itertools import chain
z3 = dict(chain(x.iteritems(), y.iteritems()))

% python -m timeit -s 'from itertools import chain; from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z3=dict(chain(x.iteritems(), y.iteritems()))'
10000 loops, best of 3: 66 usec per loop

z0 = dict(x)
z0.update(y)

% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z0=dict(x); z0.update(y)'
10000 loops, best of 3: 26.9 usec per loop

你也可以这样写作

z0 = x.copy()
z0.update(y)

正如托尼所做的那样,但(不令人惊讶)评分的差异显然没有对性能的测量效应。 使用任何人看起来对你是正确的。

我认为我的丑陋的单线只需要在这里。

z = next(z.update(y) or z for z in [x.copy()])
# or
z = (lambda z: z.update(y) or z)(x.copy())

单一表达,永远不要敢用它。

我知道Python 3有这个 {**x, **y} 事物,它是正确的事情使用(以及转到Python 3 如果你仍然有Python 2是正确的事情)。

>>> x = {'a':1, 'b': 2}
>>> y = {'b':10, 'c': 11}
>>> x, z = dict(x), x.update(y) or x
>>> x
{'a': 1, 'b': 2}
>>> y
{'c': 11, 'b': 10}
>>> z
{'a': 1, 'c': 11, 'b': 10}