我想将两个词典融入一个新的词典。

x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
z = merge(x, y)

>>> z
{'a': 1, 'b': 3, 'c': 4}

每当两个字典中都有一个关键 k 时,只应保留 y(k) 的值。


当前回答

用一个细致的理解,你可以

x = {'a':1, 'b': 2}
y = {'b':10, 'c': 11}

dc = {xi:(x[xi] if xi not in list(y.keys()) 
           else y[xi]) for xi in list(x.keys())+(list(y.keys()))}

给予

>>> dc
{'a': 1, 'c': 11, 'b': 10}

注意合成,如果不明白

{ (some_key if condition else default_key):(something_if_true if condition 
          else something_if_false) for key, value in dict_.items() }

其他回答

Python 3.5 (PEP 448) 允许更好的合成选项:

x = {'a': 1, 'b': 1}
y = {'a': 2, 'c': 2}
final = {**x, **y} 
final
# {'a': 2, 'b': 1, 'c': 2}

或甚至

final = {'a': 1, 'b': 1, **x, **y}

在 Python 3.9 中,您也可以使用 <unk>和 <unk>= 与 PEP 584 的下面的示例

d = {'spam': 1, 'eggs': 2, 'cheese': 3}
e = {'cheese': 'cheddar', 'aardvark': 'Ethel'}
d | e
# {'spam': 1, 'eggs': 2, 'cheese': 'cheddar', 'aardvark': 'Ethel'}
>>> x = {'a':1, 'b': 2}
>>> y = {'b':10, 'c': 11}
>>> x, z = dict(x), x.update(y) or x
>>> x
{'a': 1, 'b': 2}
>>> y
{'c': 11, 'b': 10}
>>> z
{'a': 1, 'c': 11, 'b': 10}

在Python3中,项目方法不再返回一个列表,而是一个视图,它像一个集一样作用。

dict(x.items() | y.items())

dict(x.viewitems() | y.viewitems())

编辑:

首先,请注意,在 Python 3 中, dic(x、 **y) 技巧不会工作,除非 y 中的键是线条。

此外,Raymond Hettinger的链路图答案是相当优雅的,因为它可以作为论点采取任意数量的论点,但从论点看起来它顺序地通过每个搜索的所有论点的列表:

In [1]: from collections import ChainMap
In [2]: from string import ascii_uppercase as up, ascii_lowercase as lo; x = dict(zip(lo, up)); y = dict(zip(up, lo))
In [3]: chainmap_dict = ChainMap(y, x)
In [4]: union_dict = dict(x.items() | y.items())
In [5]: timeit for k in union_dict: union_dict[k]
100000 loops, best of 3: 2.15 µs per loop
In [6]: timeit for k in chainmap_dict: chainmap_dict[k]
10000 loops, best of 3: 27.1 µs per loop

我是 Chainmap 的粉丝,但看起来不太实用,在那里可能有很多搜索。

到目前为止,我对列出的解决方案的问题是,在合并词典中,关键“b”的值为10,但在我的思维方式上,它应该是12。

import timeit

n=100000
su = """
x = {'a':1, 'b': 2}
y = {'b':10, 'c': 11}
"""

def timeMerge(f,su,niter):
    print "{:4f} sec for: {:30s}".format(timeit.Timer(f,setup=su).timeit(n),f)

timeMerge("dict(x, **y)",su,n)
timeMerge("x.update(y)",su,n)
timeMerge("dict(x.items() + y.items())",su,n)
timeMerge("for k in y.keys(): x[k] = k in x and x[k]+y[k] or y[k] ",su,n)

#confirm for loop adds b entries together
x = {'a':1, 'b': 2}
y = {'b':10, 'c': 11}
for k in y.keys(): x[k] = k in x and x[k]+y[k] or y[k]
print "confirm b elements are added:",x

结果:

0.049465 sec for: dict(x, **y)
0.033729 sec for: x.update(y)                   
0.150380 sec for: dict(x.items() + y.items())   
0.083120 sec for: for k in y.keys(): x[k] = k in x and x[k]+y[k] or y[k]

confirm b elements are added: {'a': 1, 'c': 11, 'b': 12}

我将所提出的与 perfplot 比较,并发现

x | y   # Python 3.9+

是最快的解决方案,与旧的好解决方案

{**x, **y}

temp = x.copy()
temp.update(y)

此分類上一篇


重复字符的代码:

from collections import ChainMap
from itertools import chain
import perfplot


def setup(n):
    x = dict(zip(range(n), range(n)))
    y = dict(zip(range(n, 2 * n), range(n, 2 * n)))
    return x, y


def copy_update(x, y):
    temp = x.copy()
    temp.update(y)
    return temp


def add_items(x, y):
    return dict(list(x.items()) + list(y.items()))


def curly_star(x, y):
    return {**x, **y}


def chain_map(x, y):
    return dict(ChainMap({}, y, x))


def itertools_chain(x, y):
    return dict(chain(x.items(), y.items()))


def python39_concat(x, y):
    return x | y


b = perfplot.bench(
    setup=setup,
    kernels=[
        copy_update,
        add_items,
        curly_star,
        chain_map,
        itertools_chain,
        python39_concat,
    ],
    labels=[
        "copy_update",
        "dict(list(x.items()) + list(y.items()))",
        "{**x, **y}",
        "chain_map",
        "itertools.chain",
        "x | y",
    ],
    n_range=[2 ** k for k in range(18)],
    xlabel="len(x), len(y)",
    equality_check=None,
)
b.save("out.png")
b.show()